Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(9): 10243-10252, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38463330

RESUMO

This research aimed to explore the potential utilization of protein (P) and fiber (F) extracted from cold-pressed hot pepper seed oil byproduct (HPOB) in the enhancement of the rheological properties, emulsion stability, and oxidative stability of a low-fat salad dressing with 10% oil content. The assessment involved the examination of several aspects, including the physical qualities such as emulsion stability, rheological behavior, and particle size as well as the microstructure and oxidative stability. It is worth mentioning that all emulsions had desirable characteristics, including shear-thinning behavior characterized by a consistency index ranging from 6.82 to 22.32 Pa s, as well as viscoelasticity and recoverability. These qualities were notably improved with the addition of P and F of HBOP. During the thermal stability testing, it was observed that the low-fat dressing containing 1% P-1F exhibited minor changes in the G* value, indicating its exceptional emulsion stability. The control salad dressings in C1 samples contained 30% oil. (B): C2: samples containing 10% oil (low-fat salad dressing sample) exhibited ζ-potential values of -34.70 and -46.70 mV. The samples 1P-1F and 2P-1F exhibited the highest ζ-potential values. Furthermore, the increase in F resulted in a reduction in droplet size and elicited elevated values for the induction period (IP), with the exception of samples containing 1% protein, 3% fiber, and 10% oil (1P-3F). The salad dressings that included P-F exhibited enhanced oxidative stability, demonstrated by their longer IP (ranging from 5.11 to 7.04 h) compared to the control samples. The formulation consisting of samples contained 1% protein, 1% fiber, and 10% oil (1P-1F) and samples contained 2% protein, 1% fiber, and 10% oil (2P-1F) exhibited superior ζ-potential, emulsion stability, and recovery rate compared to other formulations. The findings of this investigation indicate that the interaction of proteins and fibers extracted from HPOB exhibits the potential to enhance the rheological characteristics, emulsion stability, and oxidative stability of low-fat salad dressing.

2.
ACS Omega ; 9(7): 7491-7501, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38405526

RESUMO

This study aimed to investigate the effects of adding cold-pressed okra seed oil byproduct (OSB) to the muffin formulation, as a partial substitute for wheat flour, on the nutritional, physicochemical, rheological, textural, and sensory properties of muffins. The carbohydrate, protein, oil, moisture, and ash contents of OSB were 44.96, 32.34, 10.21, 7.51, and, 4.98%, respectively, indicating that OSB was rich in protein and carbohydrate. All muffin samples showed a shear thinning behavior, indicating that the viscosity of all samples decreased with increasing shear rate. The frequency sweep test showed that all samples showed viscoelastic solid-like structure [G' (storage modulus)> G″ (loss modulus)]. The K' values (between 66.45 and 139.14) were higher than the K″ values (between 36.62 and 80.42) for all samples. The result was another indication of the viscoelastic solid characteristic of the samples. In our study, it was found that the fluorescence of advanced Maillard products and soluble tryptophan index decreased with increasing amount of OSB, indicating that OSB addition led to a decrease in the amount of fluorescent Maillard reaction (MR) products. The fortified muffins with more than 10% OSB had a reduced estimated glycemic index (GI) significantly in comparison with control muffin samples (p < 0.05). The induction period (IP) values of the muffin samples containing OSB (between 11:57 and 15:15 h/min) were higher than the IP value of the control sample (10:50 h/min), indicating that OSB improved the oxidative stability of the muffin samples. The addition of OSB has shown no negative effect on sensory attributes considering texture, mouth fell, odor, and taste. This study suggested that the addition of OSB in muffins could improve rheological properties and oxidative stability and decrease GI and the amount of MR products without negative impact on sensory properties.

3.
Foods ; 13(2)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38275693

RESUMO

Although the Med-Diet is a healthy diet model, it is affected by current dietary habits. Therefore, new foods with improved nutritional value should be developed to respond to the needs of people following the Med-Diet. This study was focused on developing high-ß-glucan flat bread (bazlama) with a relatively lower GI. A bread wheat (cv. Tosunbey) flour was enriched with the flour of a high-ß-glucan-content hull-less barley (cv. Chifaa) flour (15, 30, 45 and 60%) to develop a functional bazlama. The nutritional and technological properties of bazlama samples enriched with barley flour were compared with the ones produced from bread wheat. All of the barley flour-enriched bazlama samples had higher yellowness values (b*) than the control (both crumb and crust), which is generally preferred by the consumers. Texture results indicated that bazlama samples became harder with the increase in barley flour supplementation level. The results showed that 3 g of ß-glucan can be provided from the barley flour-enriched bazlama samples (at 45 and 60% levels), and this is the limit to carry health claims. The bazlama samples enriched with barley flour were richer in Mg, K, Mn, Fe, and Zn minerals than the control (100% Tosunbey flour). While the glycemic index (GI) of commercial bread wheat and Tosunbey bazlama samples were high (88.60% and 79.20%, respectively), GI values of the bazlama samples enriched with 60% (64.73) and 45% barley flour (68.65) were medium. The lower GI values of barley flour-enriched bazlama samples are probably due to the higher ß-glucan contents of the bazlama samples. Additionally, as the barley flour supplementation level of the bazlama samples increased, the phenolics and antioxidant capacities of free and bound extracts increased compared to bread wheat bazlama. The results indicated that hull-less barley (cv. Chifaa) with high ß-glucan content may be utilized at relatively higher levels (45 and 60%) to produce bazlama with improved nutritional properties.

4.
ACS Omega ; 8(44): 41603-41611, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37970003

RESUMO

In this study, four different drying techniques, namely, hot air drying (HAD), vacuum drying (VD), ultrasound-assisted vacuum drying (UAVD), and freeze-drying (FD), were applied to blueberries. The drying times of blueberries were 1290, 1050, and 990 min for HAD, VD, and UAVD, respectively, meaning that ultrasound application significantly reduced the drying time. All dried samples except those with FD showed lower total phenolic content and antioxidant capacity than fresh samples. Samples dried with FD had a higher content of bioactive compounds than those dried with other techniques followed by UAVD. The malvidin-3-O-galactoside was the most abundant anthocyanin in the blueberries and was significantly reduced after drying with HAD, VD, and UAVD. Scanning electron microscopy (SEM) analysis of the blueberries dried with FD and UAVD exhibited less shrinkage and cell disruption and more structure. The color parameters L*, a*, and b* values of the samples were significantly affected by the drying technique (p < 0.05). According to the findings of this study, ultrasound-assisted drying technology could be employed to shorten the drying time and improve bioactive retention in blueberry fruits.

5.
Foods ; 12(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37048350

RESUMO

This study aimed to investigate the potential use of cold-pressed hot pepper seed oil by-product (HPOB) in a low-fat salad dressing to improve its rheological properties, emulsion, and oxidative stability. The total phenolic content (TPC), the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, and CUPRIC reducing antioxidant capacity (CUPRAC) values were 317.4 mg GAE/100 g, 81.87%, and 6952.8 mg Trolox/100 g, respectively. The capsaicin, dihydrocapsaicin, and total carotenoid content were 175.8 mg/100 g, 71.01 mg/100 g, and 106.3 µg/g, respectively. All emulsions indicated shear-thinning, viscoelastic solid-like behavior, and recoverable characteristics, which were improved via enrichment with HPOB. The thermal loop test showed that the low-fat sample formulated with 3% HPOB indicated little change in the G* value, showing that it exhibited high emulsion stability. The induction period values (IP) of the salad dressing samples containing HPOB (between 6.33 h and 8.33 h) were higher than the IP values of the control samples (3.20 h and 2.58 h). The enrichment with HPOB retarded the formation of oxidative volatile compounds of hexanal, nonanal, and 1-octene-3-ol. According to the results presented in this study, HPOB could be effectively used in a low-fat salad dressing to enhance its rheological characteristics and oxidative stability.

6.
Foods ; 12(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36766178

RESUMO

This study aimed to investigate the potential use of cold-pressed coconut oil by-products (COB) as a low-cost alternative source for plant-based drink and ice cream production. Firstly, a plant-based drink was produced from cold-pressed coconut oil by-products (COB drink) and compared with a commercial coconut drink. The fat, protein, and zeta potential values of coconut drink obtained from COB were higher than those of the commercial samples. In addition, the particle size value of the drink obtained from COB was found to be lower than that of the commercial drink. In the second stage, full-fat and low-fat plant-based ice cream samples using COB drink were produced and compared to control ice cream samples (produced by the commercial coconut drink) in terms of rheological, sensorial, and thermal properties. Rheological analysis showed that all plant-based ice cream samples indicated pseudoplastic, solid-like, and recoverable characteristics. Low-fat commercial control ice cream samples (C1) indicated the lowest K value (9.05 Pasn), whereas the low-fat plant-based ice cream sample produced by the COB drink (COB-3) exhibited the highest K value (17.69 Pasn). ΔHf values of the plant-based ice cream samples varied from 144.70 J/g to 172.70 J/g. The low-fat COB ice cream stabilized with 3% COB and full-fat COB ice cream samples showed lower ΔHf values than control ice cream samples, indicating that the COB ice cream showed desired thermal properties. The COB drink may be utilized in plant-based ice cream without altering sensory qualities, and low-fat ice cream could be manufactured in the same manner to attain full-fat ice cream quality characteristics. The results of this study demonstrated that COB can be successfully used as an inexpensive raw material source in the production of full-fat and reduced-fat vegetable-based ice cream.

7.
Int J Biol Macromol ; 226: 772-779, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36521704

RESUMO

This study aimed to investigate the potential usage of exopolysaccharide (EPS) produced by Leuconostoc lactis GW-6 species as an emulsifier in a low-fat mayonnaise by the formation of a complex with whey protein isolate (WPI) to improve rheological properties, emulsion, and oxidative stability. For the determination of rheological properties, the flow behavior, frequency sweep, and 3-ITT rheological properties of low-fat mayonnaise samples were studied. All samples showed shear thinning, viscoelastic solid-like, and recoverable character. The K and n values for the mayonnaise samples were determined as 24.529-174.403 Pa.sn and 0.166-0.304, respectively, indicating that shear-thinning characters could be improved with WPI-EPS interaction. The higher K' and K″ values of all low-fat samples prepared with EPS-WPI than the low-fat control sample explained the synergistic effect of EPS and WPI. Importantly, no effect was observed when WPI was used as alone as an emulsifier. Oxidative stability was tested by OXITEST and IP values of samples prepared by WPI and EPS were compared to control samples. In conclusion, the results of this study showed that the EPS and WPI interaction can significantly affect the rheological properties and emulsion and oxidative stability of mayonnaise samples.


Assuntos
Emulsificantes , Leuconostoc , Emulsões , Proteínas do Soro do Leite
8.
Foods ; 11(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35159516

RESUMO

This study involves the modeling of rheological behavior of the gum solution obtained from cold-pressed chia seed (CSG), flaxseed (FSG), and rocket seed (RSG) oil by-products and the application of these gums in a low-fat vegan mayonnaise formulation as fat replacers and emulsifier. CSG, FSG, and RSG solutions showed shear-thinning flow behavior at all concentrations. The K values ranged between 0.209 and 49.028 Pa·sn for CSG, FSG, and RSG solutions and significantly increased with increased gum concentration. The percentage recovery for the G' was significantly affected by gum type and concentrations. CSG, FSG, and RSG showed a solid-like structure, and the storage modulus (G') was higher than the loss modulus (G″) in all frequency ranges. The rheological characterization indicated that CSG, FSG, and RSG could be evaluated as thickeners and gelling agents in the food industry. In addition, the rheological properties, zeta potential, and particle size and oxidative stability (at 90 °C) of low-fat vegan mayonnaise samples prepared with CSG, FSG, and RSG were compared to samples prepared with guar gum (GG), Arabic gum (AG), and xanthan gum (XG). As a result, CSG, FSG, and RSG could be utilized for low-fat vegan mayonnaise as fat and egg replacers, stabilizers, and oxidative agents. The results of this study indicated that this study could offer a new perspective in adding value to flaxseed, chia seed, and rocket seed cold-press oil by-product.

9.
ACS Omega ; 7(51): 48520-48530, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36591179

RESUMO

This study aims to investigate the potential of the use of cold-pressed tomato seed oil by-products in a low-fat salad dressing as potential probiotic food carriers to improve the oxidative stability and emulsion stability as well as the rheological properties. The low-fat salad dressing emulsions were formulated with cold-pressed tomato seed by-product (TBP) and Lactobacillus plantarum ELB90. The optimum low-fat salad dressing formulations found were determined as 10 g/100 g oil, 0.283 g/100 g xanthan, and 2.925 g/100 g TBP. The samples prepared with the optimum formulation (SD-O) were compared with the low-fat control salad dressing sample (SD-LF) and the high-fat control salad dressing sample (SD-HF) based on the rheological properties, emulsion stability, oxidative stability, and L. plantarum ELB90 viability. The sample SD-O showed shear-thinning, viscoelastic solid, and recoverable characters. The sample SD-O showed higher IP and ΔG ++ and lower ΔS ++ values than those of the control samples. After 9 weeks of refrigerated storage, viable L. plantarum ELB90 cell counts of salad dressing samples were counted as 7.93 ± 0.03, 5.81 ± 0.04, and 6.02 ± 0.08 log cfu g-1 for SD-O, SD-LF, and SD-HF, respectively. This study showed that TBP could be successfully used in a low-fat salad dressing as a potential probiotic carrier.

10.
Foods ; 10(11)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34829043

RESUMO

The cold-pressed pumpkin seed oil by-product (POB) was evaluated for its application as a natural fat substitute and stabilizer in the reduced-fat salad dressings. For this aim, the samples were prepared by combining the xanthan gum (0.2-0.4 g/100 g), POB (1.0-5.0 g/100 g), egg yolk powder (3 g/100 g), and sunflower oil (10-30 g/100 g) in 17 different formulations. The optimization was carried out using response surface methodology (RSM) and full factorial central composite design (CCD). Results showed that all samples presented the shear-thinning (or pseudoplastic) flow behavior with 3.75-16.11 Pa·sn and 0.18-0.30, K and n values, respectively. The flow behavior rheological data were fitted to a power-law model (R2 > 0.99). The samples with high POB and low oil content showed similar K and n values compared to high oil content samples. Additionally, the dynamic rheological properties and three interval thixotropic test (3-ITT) were determined. The G' value was larger than G″ in all frequency ranges, indicating viscoelastic solid characteristics in all samples. The optimum formulation was determined as 0.384% XG, 10% oil, and 3.04% POB. The samples prepared with the optimum formulation (POBLF-SD) were compared to low-fat (LF-SD), and high-fat (HF-SD) control salad dressing samples based on the rheological properties, emulsion stability, oxidative stability, zeta potential, and particle size. The oxidation kinetic parameters namely, IP, Ea, ΔS++, and ΔG++ showed that the oxidative stability of salad dressing samples could be improved by enriched by POB. The results of the present study demonstrated that POB could be considerably utilized as a natural fat substitute and stabilizer in salad dressing type emulsions.

11.
Foods ; 10(10)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34681350

RESUMO

This study aimed to investigate the utilization of cold-pressed chia-seed oil by-products (CSOB) in a low-fat ice cream formulation as a fat replacer and stabilizer. In the study, ice cream emulsion mixtures were formulated by using 0.2-0.4% xanthan gum (XG), 2.5-12.5% fat, and 1-3% CSOB. Optimization was performed using the response surface methodology (RSM) and full factorial central composite design (CCD) based on the flow behavior rheological properties of the emulsions obtained from 17 different experimental points. All of the emulsion samples showed non-Newtonian shear-thinning flow behavior. The consistency coefficient (Κ) values of the emulsion samples were found to be 4.01-26.05 Pasn and were significantly affected by optimization parameters (p < 0.05). The optimum formulation was determined as 0.29% XG, 2.5% CSOB, 2.5% fat. The low-fat (LF-IC) and full-fat control samples (FF-IC) were compared to samples produced with an optimum formulation (CBLF-IC) based on the steady shear, frequency sweep, and 3-ITT (three interval thixotropy test) rheological properties, thermal properties, emulsion stability, light microscope images, and sensory quality. CBLF-IC showed similar rheological behavior to FF-IC. The mix of CBLF-IC showed higher emulsion stability and lower poly-dispersity index (PDI) value and fat globule diameters than those of FF-IC and LF-IC. The thermal properties of the samples were significantly affected by the addition of CSOB in an ice cream mix. CBLF-IC exhibited a lower temperature range (ΔT), enthalpy of fusion (ΔHf), and freezing point temperature (Tf) than those of FF-IC and LF-IC. While CBLF-IC exhibited a higher overrun value than other samples, it showed similar sensory properties to the FF-IC sample. The results of this study suggested that CSOB could be used successfully in low-fat ice cream production. This study also has the potential to gain new perspectives for the evaluation of CSOB as a fat substitute in a low-fat ice cream.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...