Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 14(3): e0202721, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30835724

RESUMO

Rift Valley fever (RVF) is a zoonotic disease, that causes significant morbidity and mortality among ungulate livestock and humans in endemic regions. In East Africa, the causative agent of the disease is Rift Valley fever virus (RVFV) which is primarily transmitted by multiple mosquito species in Aedes and Mansonia genera during both epizootic and enzootic periods in a complex transmission cycle largely driven by environmental and climatic factors. However, recent RVFV activity in Uganda demonstrated the capability of the virus to spread into new regions through livestock movements, and underscored the need to develop effective mitigation strategies to reduce transmission and prevent spread among cattle populations. We simulated RVFV transmission among cows in 22 different locations of the Kabale District in Uganda using real world livestock data in a network-based model. This model considered livestock as a spatially explicit factor in different locations subjected to specific vector and environmental factors, and was configured to investigate and quantitatively evaluate the relative impacts of mosquito control, livestock movement, and diversity in cattle populations on the spread of the RVF epizootic. We concluded that cattle movement should be restricted for periods of high mosquito abundance to control epizootic spreading among locations during an RVF outbreak. Importantly, simulation results also showed that cattle populations with heterogeneous genetic diversity as crossbreeds were less susceptible to infection compared to homogenous cattle populations.


Assuntos
Modelos Biológicos , Febre do Vale de Rift/epidemiologia , Zoonoses/epidemiologia , Migração Animal , Animais , Bovinos/genética , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/transmissão , Simulação por Computador , Feminino , Variação Genética , Humanos , Gado , Masculino , Mosquitos Vetores/virologia , Febre do Vale de Rift/transmissão , Uganda/epidemiologia , Zoonoses/transmissão
2.
Vaccine ; 32(41): 5330-6, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25092634

RESUMO

Inactivated whole virus foot-and-mouth disease (FMD) vaccines are used worldwide for protection against FMD, but not all vaccines induce protection against all genetic variants of the same FMD virus serotype. The aim of this study is to investigate whether the "breadth" of the antibody response against different strains of the same FMD virus serotype in cattle could be improved by using a different adjuvant, a mix of antigens and/or different routes of administration. To this end, six groups of five cattle were vaccinated with different FMD virus serotype A strain vaccines formulated with Montanide ISA 206 VG adjuvant. Antibody responses for homologous and heterologous cross-reactivity against a panel of 10 different FMD virus serotype A strains were tested by a liquid-phase blocking ELISA. Results of cattle vaccinated with ISA 206 VG adjuvanted vaccine were compared with results obtained in a previous study using aluminium hydroxide-saponin adjuvant. No significant effect of adjuvant on the breadth of the antibody response was observed, neither for mixing of antigens nor for the route of administration (subcutaneous vs. intradermal). Comparison of antigen payload, however, increased both homologous and heterologous titres; a 10-fold higher antigen dose resulted in approximately four times higher titres against all tested strains. Our study shows that breadth of the antibody response depends mainly on the vaccine strain; we therefore propose that, for vaccine preparation, only FMD virus strains are selected that, among other important characteristics, will induce a wide antibody response to different field strains.


Assuntos
Adjuvantes Imunológicos/farmacologia , Formação de Anticorpos , Doenças dos Bovinos/prevenção & controle , Febre Aftosa/prevenção & controle , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/sangue , Antígenos Virais/imunologia , Bovinos/imunologia , Doenças dos Bovinos/virologia , Vírus da Febre Aftosa/classificação , Sorogrupo , Vacinação/métodos
3.
Vaccine ; 32(44): 5794-800, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25171846

RESUMO

Vaccine strain selection for emerging foot-and-mouth disease virus (FMDV) outbreaks in enzootic countries can be addressed through antigenic and genetic characterisation of recently circulating viruses. A total of 56 serotype A FMDVs isolated between 1998 and 2012, from Central, East and North African countries were characterised antigenically by virus neutralisation test using antisera to three existing and four candidate vaccine strains and, genetically by characterising the full capsid sequence data. A Bayesian analysis of the capsid sequence data revealed the viruses to be of either African or Asian topotypes with subdivision of the African topotype viruses into four genotypes (Genotypes I, II, IV and VII). The existing vaccine strains were found to be least cross-reactive (good matches observed for only 5.4-46.4% of the sampled viruses). Three bovine antisera, raised against A-EA-2007, A-EA-1981 and A-EA-1984 viruses, exhibited broad cross-neutralisation, towards more than 85% of the circulating viruses. Of the three vaccines, A-EA-2007 was the best showing more than 90% in-vitro cross-protection, as well as being the most recent amongst the vaccine strains used in this study. It therefore appears antigenically suitable as a vaccine strain to be used in the region in FMD control programmes.


Assuntos
Antígenos Virais/imunologia , Vírus da Febre Aftosa/classificação , Vírus da Febre Aftosa/imunologia , África Oriental , Animais , Teorema de Bayes , Proteínas do Capsídeo/genética , Bovinos , Genótipo , Testes de Neutralização , Filogenia , RNA Viral/genética , Análise de Sequência de RNA , Sorogrupo
4.
Clin Vaccine Immunol ; 21(5): 674-83, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24623625

RESUMO

Vaccination has been one of the most important interventions in disease prevention and control. The impact of vaccination largely depends on the quality and suitability of the chosen vaccine. To determine the suitability of a vaccine strain, antigenic matching is usually studied by in vitro analysis. In this study, we performed three in vitro test methods to determine which one gives the lowest variability and the highest discriminatory capacity. Binary ethylenimine inactivated vaccines, prepared from 10 different foot-and-mouth disease (FMD) virus serotype A strains, were used to vaccinate cattle (5 animals for each strain). The antibody titers in blood serum samples 3 weeks postvaccination (w.p.v.) were determined by a virus neutralization test, neutralization index test, and liquid-phase blocking enzyme-linked immunosorbent assay (ELISA). The titers were then used to calculate relationship coefficient (r1) values. These r1 values were compared to the genetic lineage using receiver operating characteristic (ROC) analysis. In the two neutralization test methods, the median titers observed against the test strains differed considerably, and the sera of the vaccinated animals did not always show the highest titers against their respective homologous virus strains. When the titers were corrected for test strain effect (scaling), the variability (standard error of the mean per vaccinated group) increased because the results were on a different scale, but the discriminatory capacity improved. An ROC analysis of the r1 value calculated on both observed and scaled titers showed that only r1 values of the liquid-phase blocking ELISA gave a consistent statistically significant result. Under the conditions of the present study, the liquid-phase blocking ELISA showed less variation and still had a higher discriminatory capacity than the other tests.


Assuntos
Vírus da Febre Aftosa/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Bovinos , Ensaio de Imunoadsorção Enzimática/métodos , Testes de Neutralização/métodos , Sensibilidade e Especificidade , Vacinas Virais/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...