Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
Int J Food Microbiol ; 386: 110016, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36435097

RESUMO

Applications for nanotechnology, which is constantly gaining prominence, have been found in a variety of industrial applications. Due to the multiple benefits associated with it, including an eco-friendly, pollution-free, cost-effective, and non-toxic synthesis method, the green way to synthesize nanostructures utilizing waste biomasses has become one of the key focuses of the current researches globally. Additionally, lignocellulasic biomass (LCB), which is a waste of the food crops, can be used as one of the potential substrates for the synthesis of a variety of nanostructures. Among different types of LCB, rice straw is a potential food waste biomass and can be efficiently employed during the synthesis of different types of nanostructures for a range of technological applications. Here, diverse phenolic compounds found in rice straw as well as reducing sugars can be used as natural reducing and capping agents to prepare a range of nanostructures. Based on the aforementioned facts, the objective of this review is to investigate the viability of using rice straw to produce nanostructured materials using rice straw as a renewable biosource following an environmentally friendly method. Additionally, it is noted that various organic compounds present on the surface of nanostructures produced using rice straw extract/hydrolyzate through a green approach may be more successful in terms of antibacterial efficacy, which might be of considerable interest for a variety of biomedical applications. Based on the possibility of enhancing the antimicrobial activity of developed nanostructures, the review also provides overview on the feasibility, characteristics, and availability of using rice straw extract in the synthesis of nanostructures. Additionally, the constraints of the present and potential futures of the green synthesis methods using rice straw wastes have been explored.


Assuntos
Nanoestruturas , Oryza , Eliminação de Resíduos , Alimentos , Antibacterianos , Extratos Vegetais
4.
Environ Res ; 215(Pt 2): 114292, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36100106

RESUMO

At present, development and production of advanced green energy sources are highly demanded, and this may offer a clean and sustainable environment to our modern society. In this reference, biogas is emerging as a promising green energy source and seems to have high potential to replace fossil-fuel based energy sources in the coming future. Further, lignocellulosic biomass (LCB) based biogas production technology has been found to be highly promising owing to several advantages associated therewith. Rich inorganic content, renewable nature, huge availability and low-cost are the key beneficial factors of LCB-based feedstock l to produce biogas. Among the varieties of LCB, paddy straw is one of the most demanding feedstocks and is highly rich in organic compounds that are imperative to producing biogas. Nevertheless, it is noticed that paddy straw as a waste material is usually disposed-off by direct burning, whereas it exhibits low natural digestibility due to the presence of high lignin and silica content which causes severe environmental pollution. On the other hand, paddy straw can be a potential feedstock to produce biogas through anaerobic digestion. Therefore, based on the current ongoing research studies worldwide, this review evaluates the advancements made in the AD process. Meanwhile, existing limitations and future recommendations to improve the yield and productivity of the biogas using paddy straw have been discussed. The emphasis has also been given to various operational parameters developments, related shortcomings, and strategies to improve biogas production at pilot scale.


Assuntos
Biocombustíveis , Lignina , Anaerobiose , Combustíveis Fósseis , Dióxido de Silício
5.
Chemosphere ; 309(Pt 1): 136532, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36152827

RESUMO

In the present work, kinetic study has been conducted in order to effectively eliminate the p-cresol from wastewater employing isolated bacterial strain Serratia marcescens ABHI001 under batch shake flasks in the concentration varying from 50 to 500 mg/L. Further, effects of various parameters including p-cresol concentration, inoculum dosage, temperature, pH and agitation have been investigated. It was found that 10% v/v inoculum of 24 h age, was effective in degrading p-cresol. Beside this, it was noticed that the concentration of P-cresol above 100 mg/L exhibited an inhibitory effect. The maximum specific growth rate (µmax) was obtained to be 0.360 h-1 for 100 mgL-1 concentration. Further, the experimental results were well fitted with Halden's and Andrew's models and kinetic parameters µmax, KS and Ki in case of Haldane model were calculated to be 0.9697 h-1, 88.07 mgL-1 and 219.9 mgL-1, respectively whereas the corresponding values in case of Andrews's constants were 0.6917 h-1, 62.83 mgL-1 and 307.4 mgL-1, respectively. The yield coefficient for the growth on p-cresol was found to be 0.82.


Assuntos
Poluentes Ambientais , Purificação da Água , Águas Residuárias , Biodegradação Ambiental , Serratia marcescens/metabolismo , Fenóis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...