Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PNAS Nexus ; 2(10): pgad301, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37817775

RESUMO

The rapid development of seafood trade networks alongside the decline in biomass of many marine populations raises important questions about the role of global trade in fisheries sustainability. Mounting empirical and theoretical evidence shows the importance of trade development on commercially exploited species. However, there is limited understanding of how the development of trade networks, such as differences in connectivity and duration, affects fisheries sustainability. In a global analysis of over 400,000 bilateral trade flows and stock status estimates for 876 exploited fish and marine invertebrates from 223 territories, we reveal patterns between seafood trade network indicators and fisheries sustainability using a dynamic panel regression analysis. We found that fragmented networks with strong connectivity within a group of countries and weaker links between those groups (modularity) are associated with higher relative biomass. From 1995 to 2015, modularity fluctuated, and the number of trade connections (degree) increased. Unlike previous studies, we found no relationship between the number or duration of trade connections and fisheries sustainability. Our results highlight the need to jointly investigate fisheries and trade. Improved coordination and partnerships between fisheries authorities and trade organizations present opportunities to foster more sustainable fisheries.

2.
Philos Trans R Soc Lond B Biol Sci ; 378(1881): 20220187, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37246376

RESUMO

Species richness is an essential biodiversity variable indicative of ecosystem states and rates of invasion, speciation and extinction both contemporarily and in fossil records. However, limited sampling effort and spatial aggregation of organisms mean that biodiversity surveys rarely observe every species in the survey area. Here we present a non-parametric, asymptotic and bias-minimized richness estimator, Ω by modelling how spatial abundance characteristics affect observation of species richness. Improved asymptotic estimators are critical when both absolute richness and difference detection are important. We conduct simulation tests and applied Ω to a tree census and a seaweed survey. Ω consistently outperforms other estimators in balancing bias, precision and difference detection accuracy. However, small difference detection is poor with any asymptotic estimator. An R-package, Richness, performs the proposed richness estimations along with other asymptotic estimators and bootstrapped precisions. Our results explain how natural and observer-induced variations affect species observation, how these factors can be used to correct observed richness using the estimator Ω on a variety of data, and why further improvements are critical for biodiversity assessments. This article is part of the theme issue 'Detecting and attributing the causes of biodiversity change: needs, gaps and solutions'.


Assuntos
Ecossistema , Modelos Biológicos , Biodiversidade , Simulação por Computador , Árvores
3.
Philos Trans R Soc Lond B Biol Sci ; 378(1881): 20220181, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37246389

RESUMO

This issue addresses the multifaceted problems of understanding biodiversity change to meet emerging international development and conservation goals, national economic accounting and diverse community needs. Recent international agreements highlight the need to establish monitoring and assessment programmes at national and regional levels. We identify an opportunity for the research community to develop the methods for robust detection and attribution of biodiversity change that will contribute to national assessments and guide conservation action. The 16 contributions of this issue address six major aspects of biodiversity assessment: connecting policy to science, establishing observation, improving statistical estimation, detecting change, attributing causes and projecting the future. These studies are led by experts in Indigenous studies, economics, ecology, conservation, statistics, and computer science, with representations from Asia, Africa, South America, North America and Europe. The results place biodiversity science in the context of policy needs and provide an updated roadmap for how to observe biodiversity change in a way that supports conservation action via robust detection and attribution science. This article is part of the theme issue 'Detecting and attributing the causes of biodiversity change: needs, gaps and solutions'.


Assuntos
Conservação dos Recursos Naturais , Ecologia , Conservação dos Recursos Naturais/métodos , Biodiversidade , África , Políticas
4.
PLoS One ; 18(3): e0283020, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36989258

RESUMO

Recent research has revealed the diversity and biomass of life across ecosystems, but how that biomass is distributed across body sizes of all living things remains unclear. We compile the present-day global body size-biomass spectra for the terrestrial, marine, and subterranean realms. To achieve this compilation, we pair existing and updated biomass estimates with previously uncatalogued body size ranges across all free-living biological groups. These data show that many biological groups share similar ranges of body sizes, and no single group dominates size ranges where cumulative biomass is highest. We then propagate biomass and size uncertainties and provide statistical descriptions of body size-biomass spectra across and within major habitat realms. Power laws show exponentially decreasing abundance (exponent -0.9±0.02 S.D., R2 = 0.97) and nearly equal biomass (exponent 0.09±0.01, R2 = 0.56) across log size bins, which resemble previous aquatic size spectra results but with greater organismal inclusivity and global coverage. In contrast, a bimodal Gaussian mixture model describes the biomass pattern better (R2 = 0.86) and suggests small (~10-15 g) and large (~107 g) organisms outweigh other sizes by one order magnitude (15 and 65 Gt versus ~1 Gt per log size). The results suggest that the global body size-biomass relationships is bimodal, but substantial one-to-two orders-of-magnitude uncertainty mean that additional data will be needed to clarify whether global-scale universal constraints or local forces shape these patterns.


Assuntos
Ecossistema , Biomassa , Tamanho Corporal , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...