Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
2.
Ann Intensive Care ; 14(1): 78, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38776032

RESUMO

BACKGROUND: Reverse triggering (RT) was described in 2013 as a form of patient-ventilator asynchrony, where patient's respiratory effort follows mechanical insufflation. Diagnosis requires esophageal pressure (Pes) or diaphragmatic electrical activity (EAdi), but RT can also be diagnosed using standard ventilator waveforms. HYPOTHESIS: We wondered (1) how frequently RT would be present but undetected in the figures from literature, especially before 2013; (2) whether it would be more prevalent in the era of small tidal volumes after 2000. METHODS: We searched PubMed, EMBASE, and the Cochrane Central Register of Controlled Trials, from 1950 to 2017, with key words related to asynchrony to identify papers with figures including ventilator waveforms expected to display RT if present. Experts labelled waveforms. 'Definite' RT was identified when Pes or EAdi were in the tracing, and 'possible' RT when only flow and pressure waveforms were present. Expert assessment was compared to the author's descriptions of waveforms. RESULTS: We found 65 appropriate papers published from 1977 to now, containing 181 ventilator waveforms. 21 cases of 'possible' RT and 25 cases of 'definite' RT were identified by the experts. 18.8% of waveforms prior to 2013 had evidence of RT. Most cases were published after 2000 (1 before vs. 45 after, p = 0.03). 54% of RT cases were attributed to different phenomena. A few cases of identified RT were already described prior to 2013 using different terminology (earliest in 1997). While RT cases attributed to different phenomena decreased after 2013, 60% of 'possible' RT remained missed. CONCLUSION: RT has been present in the literature as early as 1997, but most cases were found after the introduction of low tidal volume ventilation in 2000. Following 2013, the number of undetected cases decreased, but RT are still commonly missed. Reverse Triggering, A Missed Phenomenon in the Literature. Critical Care Canada Forum 2019 Abstracts. Can J Anesth/J Can Anesth 67 (Suppl 1), 1-162 (2020). https://doi-org.myaccess.library.utoronto.ca/ https://doi.org/10.1007/s12630-019-01552-z .

3.
Crit Care ; 28(1): 107, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566126

RESUMO

BACKGROUND: Pre-clinical studies suggest that dyssynchronous diaphragm contractions during mechanical ventilation may cause acute diaphragm dysfunction. We aimed to describe the variability in diaphragm contractile loading conditions during mechanical ventilation and to establish whether dyssynchronous diaphragm contractions are associated with the development of impaired diaphragm dysfunction. METHODS: In patients receiving invasive mechanical ventilation for pneumonia, septic shock, acute respiratory distress syndrome, or acute brain injury, airway flow and pressure and diaphragm electrical activity (Edi) were recorded hourly around the clock for up to 7 days. Dyssynchronous post-inspiratory diaphragm loading was defined based on the duration of neural inspiration after expiratory cycling of the ventilator. Diaphragm function was assessed on a daily basis by neuromuscular coupling (NMC, the ratio of transdiaphragmatic pressure to diaphragm electrical activity). RESULTS: A total of 4508 hourly recordings were collected in 45 patients. Edi was low or absent (≤ 5 µV) in 51% of study hours (median 71 h per patient, interquartile range 39-101 h). Dyssynchronous post-inspiratory loading was present in 13% of study hours (median 7 h per patient, interquartile range 2-22 h). The probability of dyssynchronous post-inspiratory loading was increased with reverse triggering (odds ratio 15, 95% CI 8-35) and premature cycling (odds ratio 8, 95% CI 6-10). The duration and magnitude of dyssynchronous post-inspiratory loading were associated with a progressive decline in diaphragm NMC (p < 0.01 for interaction with time). CONCLUSIONS: Dyssynchronous diaphragm contractions may impair diaphragm function during mechanical ventilation. TRIAL REGISTRATION: MYOTRAUMA, ClinicalTrials.gov NCT03108118. Registered 04 April 2017 (retrospectively registered).


Assuntos
Respiração Artificial , Síndrome do Desconforto Respiratório , Humanos , Diafragma , Respiração Artificial/efeitos adversos , Tórax , Ventiladores Mecânicos
7.
Crit Care ; 28(1): 75, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486268

RESUMO

BACKGROUND: Flow starvation is a type of patient-ventilator asynchrony that occurs when gas delivery does not fully meet the patients' ventilatory demand due to an insufficient airflow and/or a high inspiratory effort, and it is usually identified by visual inspection of airway pressure waveform. Clinical diagnosis is cumbersome and prone to underdiagnosis, being an opportunity for artificial intelligence. Our objective is to develop a supervised artificial intelligence algorithm for identifying airway pressure deformation during square-flow assisted ventilation and patient-triggered breaths. METHODS: Multicenter, observational study. Adult critically ill patients under mechanical ventilation > 24 h on square-flow assisted ventilation were included. As the reference, 5 intensive care experts classified airway pressure deformation severity. Convolutional neural network and recurrent neural network models were trained and evaluated using accuracy, precision, recall and F1 score. In a subgroup of patients with esophageal pressure measurement (ΔPes), we analyzed the association between the intensity of the inspiratory effort and the airway pressure deformation. RESULTS: 6428 breaths from 28 patients were analyzed, 42% were classified as having normal-mild, 23% moderate, and 34% severe airway pressure deformation. The accuracy of recurrent neural network algorithm and convolutional neural network were 87.9% [87.6-88.3], and 86.8% [86.6-87.4], respectively. Double triggering appeared in 8.8% of breaths, always in the presence of severe airway pressure deformation. The subgroup analysis demonstrated that 74.4% of breaths classified as severe airway pressure deformation had a ΔPes > 10 cmH2O and 37.2% a ΔPes > 15 cmH2O. CONCLUSIONS: Recurrent neural network model appears excellent to identify airway pressure deformation due to flow starvation. It could be used as a real-time, 24-h bedside monitoring tool to minimize unrecognized periods of inappropriate patient-ventilator interaction.


Assuntos
Aprendizado Profundo , Respiração Artificial , Adulto , Humanos , Inteligência Artificial , Pulmão , Respiração Artificial/métodos , Ventiladores Mecânicos
9.
Am J Respir Crit Care Med ; 209(1): 24-36, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38032683

RESUMO

Background: This document updates previously published Clinical Practice Guidelines for the management of patients with acute respiratory distress syndrome (ARDS), incorporating new evidence addressing the use of corticosteroids, venovenous extracorporeal membrane oxygenation, neuromuscular blocking agents, and positive end-expiratory pressure (PEEP). Methods: We summarized evidence addressing four "PICO questions" (patient, intervention, comparison, and outcome). A multidisciplinary panel with expertise in ARDS used the Grading of Recommendations, Assessment, Development, and Evaluation framework to develop clinical recommendations. Results: We suggest the use of: 1) corticosteroids for patients with ARDS (conditional recommendation, moderate certainty of evidence), 2) venovenous extracorporeal membrane oxygenation in selected patients with severe ARDS (conditional recommendation, low certainty of evidence), 3) neuromuscular blockers in patients with early severe ARDS (conditional recommendation, low certainty of evidence), and 4) higher PEEP without lung recruitment maneuvers as opposed to lower PEEP in patients with moderate to severe ARDS (conditional recommendation, low to moderate certainty), and 5) we recommend against using prolonged lung recruitment maneuvers in patients with moderate to severe ARDS (strong recommendation, moderate certainty). Conclusions: We provide updated evidence-based recommendations for the management of ARDS. Individual patient and illness characteristics should be factored into clinical decision making and implementation of these recommendations while additional evidence is generated from much-needed clinical trials.


Assuntos
Bloqueadores Neuromusculares , Síndrome do Desconforto Respiratório , Adulto , Humanos , Corticosteroides/uso terapêutico , Pulmão , Bloqueadores Neuromusculares/uso terapêutico , Respiração com Pressão Positiva , Síndrome do Desconforto Respiratório/tratamento farmacológico
10.
Crit Care Explor ; 5(9): e0968, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37644972

RESUMO

OBJECTIVES: To describe the rate of failure of the first transition to pressure support ventilation (PSV) after systematic spontaneous awakening trials (SATs) in patients with acute hypoxemic respiratory failure (AHRF) and to assess whether the failure is higher in COVID-19 compared with AHRF of other etiologies. To determine predictors and potential association of failure with outcomes. DESIGN: Retrospective cohort study. SETTING: Twenty-eight-bedded medical-surgical ICU in a private hospital (Argentina). PATIENTS: Subjects with arterial pressure of oxygen (AHRF to Fio2 [Pao2/Fio2] < 300 mm Hg) of different etiologies under controlled mechanical ventilation (MV). INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We collected data during controlled ventilation within 24 hours before SAT followed by the first PSV transition. Failure was defined as the need to return to fully controlled MV within 3 calendar days of PSV start. A total of 274 patients with AHRF (189 COVID-19 and 85 non-COVID-19) were included. The failure occurred in 120 of 274 subjects (43.7%) and was higher in COVID-19 versus non-COVID-19 (49.7% and 30.5%; p = 0.003). COVID-19 diagnosis (odds ratio [OR]: 2.22; 95% CI [1.15-4.43]; p = 0.020), previous neuromuscular blockers (OR: 2.16; 95% CI [1.15-4.11]; p = 0.017) and higher fentanyl dose (OR: 1.29; 95% CI [1.05-1.60]; p = 0.018) increased the failure chances. Higher BMI (OR: 0.95; 95% CI [0.91-0.99]; p = 0.029), Pao2/Fio2 (OR: 0.87; 95% CI [0.78-0.97]; p = 0.017), and pH (OR: 0.61; 95% CI [0.38-0.96]; p = 0.035) were protective. Failure groups had higher 60-day ventilator dependence (p < 0.001), MV duration (p < 0.0001), and ICU stay (p = 0.001). Patients who failed had higher mortality in COVID-19 group (p < 0.001) but not in the non-COVID-19 (p = 0.083). CONCLUSIONS: In patients with AHRF of different etiologies, the failure of the first PSV attempt was 43.7%, and at a higher rate in COVID-19. Independent risk factors included COVID-19 diagnosis, fentanyl dose, previous neuromuscular blockers, acidosis and hypoxemia preceding SAT, whereas higher BMI was protective. Failure was associated with worse outcomes.

11.
Eur Respir Rev ; 32(168)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37197768

RESUMO

There is a well-recognised importance for personalising mechanical ventilation settings to protect the lungs and the diaphragm for each individual patient. Measurement of oesophageal pressure (P oes) as an estimate of pleural pressure allows assessment of partitioned respiratory mechanics and quantification of lung stress, which helps our understanding of the patient's respiratory physiology and could guide individualisation of ventilator settings. Oesophageal manometry also allows breathing effort quantification, which could contribute to improving settings during assisted ventilation and mechanical ventilation weaning. In parallel with technological improvements, P oes monitoring is now available for daily clinical practice. This review provides a fundamental understanding of the relevant physiological concepts that can be assessed using P oes measurements, both during spontaneous breathing and mechanical ventilation. We also present a practical approach for implementing oesophageal manometry at the bedside. While more clinical data are awaited to confirm the benefits of P oes-guided mechanical ventilation and to determine optimal targets under different conditions, we discuss potential practical approaches, including positive end-expiratory pressure setting in controlled ventilation and assessment of inspiratory effort during assisted modes.


Assuntos
Pulmão , Respiração Artificial , Humanos , Respiração Artificial/efeitos adversos , Mecânica Respiratória/fisiologia , Ventiladores Mecânicos , Monitorização Fisiológica
12.
Am J Respir Crit Care Med ; 207(7): e49-e68, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36999950

RESUMO

Background: Sleep and circadian disruption (SCD) is common and severe in the ICU. On the basis of rigorous evidence in non-ICU populations and emerging evidence in ICU populations, SCD is likely to have a profound negative impact on patient outcomes. Thus, it is urgent that we establish research priorities to advance understanding of ICU SCD. Methods: We convened a multidisciplinary group with relevant expertise to participate in an American Thoracic Society Workshop. Workshop objectives included identifying ICU SCD subtopics of interest, key knowledge gaps, and research priorities. Members attended remote sessions from March to November 2021. Recorded presentations were prepared and viewed by members before Workshop sessions. Workshop discussion focused on key gaps and related research priorities. The priorities listed herein were selected on the basis of rank as established by a series of anonymous surveys. Results: We identified the following research priorities: establish an ICU SCD definition, further develop rigorous and feasible ICU SCD measures, test associations between ICU SCD domains and outcomes, promote the inclusion of mechanistic and patient-centered outcomes within large clinical studies, leverage implementation science strategies to maximize intervention fidelity and sustainability, and collaborate among investigators to harmonize methods and promote multisite investigation. Conclusions: ICU SCD is a complex and compelling potential target for improving ICU outcomes. Given the influence on all other research priorities, further development of rigorous, feasible ICU SCD measurement is a key next step in advancing the field.


Assuntos
Sono , Sociedades Médicas , Humanos , Estados Unidos , Polissonografia
14.
Am J Respir Crit Care Med ; 207(5): 533-543, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36470240

RESUMO

Reverse triggering dyssynchrony is a frequent phenomenon recently recognized in sedated critically ill patients under controlled ventilation. It occurs in at least 30-55% of these patients and often occurs in the transition from fully passive to assisted mechanical ventilation. During reverse triggering, patient inspiratory efforts start after the passive insufflation by mechanical breaths. The most often referred mechanism is the entrainment of the patient's intrinsic respiratory rhythm from the brainstem respiratory centers to periodic mechanical insufflations from the ventilator. However, reverse triggering might also occur because of local reflexes without involving the respiratory rhythm generator in the brainstem. Reverse triggering is observed during the acute phase of the disease, when patients may be susceptible to potential deleterious consequences of injurious or asynchronous efforts. Diagnosing reverse triggering might be challenging and can easily be missed. Inspection of ventilator waveforms or more sophisticated methods, such as the electrical activity of the diaphragm or esophageal pressure, can be used for diagnosis. The occurrence of reverse triggering might have clinical consequences. On the basis of physiological data, reverse triggering might be beneficial or injurious for the diaphragm and the lung, depending on the magnitude of the inspiratory effort. Reverse triggering can cause breath-stacking and loss of protective lung ventilation when triggering a second cycle. Little is known about how to manage patients with reverse triggering; however, available evidence can guide management on the basis of physiological principles.


Assuntos
Respiração Artificial , Respiração , Humanos , Ventiladores Mecânicos , Pulmão , Diafragma
15.
Intensive Care Med ; 48(10): 1274-1286, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35690953

RESUMO

Treatment of respiratory failure has improved dramatically since the polio epidemic in the 1950s with the use of invasive techniques for respiratory support: mechanical ventilation and extracorporeal respiratory support. However, respiratory support is only a supportive therapy, designed to "buy time" while the disease causing respiratory failure abates. It ensures viable gas exchange and prevents cardiorespiratory collapse in the context of excessive loads. Because the use of invasive modalities of respiratory support is also associated with substantial harm, it remains the responsibility of the clinician to minimize such hazards. Direct iatrogenic consequences of mechanical ventilation include the risk to the lung (ventilator-induced lung injury) and the diaphragm (ventilator-induced diaphragm dysfunction and other forms of myotrauma). Adverse consequences on hemodynamics can also be significant. Indirect consequences (e.g., immobilization, sleep disruption) can have devastating long-term effects. Increasing awareness and understanding of these mechanisms of injury has led to a change in the philosophy of care with a shift from aiming to normalize gases toward minimizing harm. Lung (and more recently also diaphragm) protective ventilation strategies include the use of extracorporeal respiratory support when the risk of ventilation becomes excessive. This review provides an overview of the historical background of respiratory support, pathophysiology of respiratory failure and rationale for respiratory support, iatrogenic consequences from mechanical ventilation, specifics of the implementation of mechanical ventilation, and role of extracorporeal respiratory support. It highlights the need for appropriate monitoring to estimate risks and to individualize ventilation and sedation to provide safe respiratory support to each patient.


Assuntos
Oxigenação por Membrana Extracorpórea , Síndrome do Desconforto Respiratório , Insuficiência Respiratória , Lesão Pulmonar Induzida por Ventilação Mecânica , Oxigenação por Membrana Extracorpórea/métodos , Humanos , Doença Iatrogênica , Respiração Artificial/efeitos adversos , Respiração Artificial/métodos , Insuficiência Respiratória/terapia , Lesão Pulmonar Induzida por Ventilação Mecânica/etiologia , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle
16.
Artigo em Inglês | MEDLINE | ID: mdl-35511720

RESUMO

High-flow nasal cannula (HFNC) is extensively used for acute respiratory failure. However, questions remain regarding its physiological effects. We explored 1) whether HFNC produced similar effects to continuous positive airway pressure (CPAP); 2) possible explanations of respiratory rate changes; 3) the effects of mouth opening. Two studies were conducted: a bench study using a manikin's head with lungs connected to a breathing simulator while delivering HFNC flow rates from 0 to 60L/min; a physiological cross-over study in 10 healthy volunteers receiving HFNC (20 to 60L/min) with the mouth open or closed and CPAP 4cmH2O delivered through face-mask. Nasopharyngeal and esophageal pressures were measured; tidal volume and flow were estimated using calibrated electrical impedance tomography. In the bench study, nasopharyngeal pressure at end-expiration reached 4cmH2O with HFNC at 60L/min, while tidal volume decreased with increasing flow. In volunteers with HFNC at 60L/min, nasopharyngeal pressure reached 6.8cmH2O with mouth closed and 0.8cmH2O with mouth open; p<0.001. When increasing HFNC flow, respiratory rate decreased by lengthening expiratory time, tidal volume did not change, and effort decreased (pressure-time product of the respiratory muscles); at 40L/min, effort was equivalent between CPAP and HFNC40L/min and became lower at 60L/min (p=0.045). During HFNC with mouth closed, and not during CPAP, resistance to breathing was increased, mostly during expiration. In conclusion, mouth closure during HFNC induces a positive nasopharyngeal pressure proportional to flow rate and an increase in expiratory resistance that might explain the prolonged expiration and reduction in respiratory rate and effort, and contribute to physiological benefits.

19.
J Crit Care ; 68: 96-103, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34952477

RESUMO

PURPOSE: An inspiratory hold during patient-triggered assisted ventilation potentially allows to measure driving pressure and inspiratory effort. However, muscular activity can make this measurement unreliable. We aim to define the criteria for inspiratory holds reliability during patient-triggered breaths. MATERIAL AND METHODS: Flow, airway and esophageal pressure recordings during patient-triggered breaths from a multicentre observational study (BEARDS, NCT03447288) were evaluated by six independent raters, to determine plateau pressure readability. Features of "readable" and "unreadable" holds were compared. Muscle pressure estimate from the hold was validated against other measures of inspiratory effort. RESULTS: Ninety-two percent of the recordings were consistently judged as readable or unreadable by at least four raters. Plateau measurement showed a high consistency among raters. A short time from airway peak to plateau pressure and a stable and longer plateau characterized readable holds. Unreadable plateaus were associated with higher indexes of inspiratory effort. Muscular pressure computed from the hold showed a strong correlation with independent indexes of inspiratory effort. CONCLUSION: The definition of objective parameters of plateau reliability during assisted-breath provides the clinician with a tool to target a safer assisted-ventilation and to detect the presence of high inspiratory effort.


Assuntos
Respiração com Pressão Positiva , Respiração Artificial , Humanos , Pressão , Reprodutibilidade dos Testes
20.
Eur Respir J ; 58(5)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33875492

RESUMO

BACKGROUND: This study investigated dyspnoea intensity and respiratory muscle ultrasound early after extubation to predict extubation failure. METHODS: The study was conducted prospectively in two intensive care units in France and Canada. Patients intubated for at least 48 h were studied within 2 h after an extubation following a successful spontaneous breathing trial. Dyspnoea was evaluated by a dyspnoea visual analogue scale (Dyspnoea-VAS) ranging from 0 to 10 and the Intensive Care Respiratory Distress Observational Scale (IC-RDOS). The ultrasound thickening fraction of the parasternal intercostal and the diaphragm was measured; limb muscle strength was evaluated using the Medical Research Council (MRC) score (range 0-60). RESULTS: Extubation failure occurred in 21 out of 122 enrolled patients (17%). The median (interquartile range (IQR)) Dyspnoea-VAS and IC-RDOS were higher in patients with extubation failure versus success: 7 (4-9) versus 3 (1-5) (p<0.001) and 3.7 (1.8-5.8) versus 1.7 (1.5-2.1) (p<0.001), respectively. The median (IQR) ratio of parasternal intercostal muscle to diaphragm thickening fraction was significantly higher and MRC was lower in patients with extubation failure compared with extubation success: 0.9 (0.4-2.1) versus 0.3 (0.2-0.5) (p<0.001) and 45 (36-50) versus 52 (44-60) (p=0.012), respectively. The thickening fraction of the parasternal intercostal and its ratio to diaphragm thickening showed the highest area under the receiver operating characteristic curve (AUC) for an early prediction of extubation failure (0.81). AUCs of Dyspnoea-VAS and IC-RDOS reached 0.78 and 0.74, respectively. CONCLUSIONS: Respiratory muscle ultrasound and dyspnoea measured within 2 h after extubation predict subsequent extubation failure.


Assuntos
Extubação , Desmame do Respirador , Diafragma/diagnóstico por imagem , Dispneia , Humanos , Estudos Prospectivos , Respiração Artificial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...