Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 357: 120722, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38569260

RESUMO

This study employs response surface methodology and a central composite design (CCD) to optimize hydrothermal treatment (HTT) conditions for the valorization of food waste (FW). Lab-scale pressure reactor-based HTT processes are investigated to detect the effects of temperature (220-340 °C) and resident time (90-260 min) on elemental composition and fatty acid recovery in the hydrothermal liquid. Central to the study is the identification of temperature as the primary factor influencing food waste conversion during the HTT process, showcasing its impact on HTT product yields. The liquid fraction, rich in saturated fatty acids (SFA), demonstrates a temperature-dependent trend, with higher temperatures favoring SFA recovery. Specifically, HTT at 340 °C in 180 min exhibits the highest SFA percentages, reaching up to 52.5 wt%. The study establishes HTT as a promising avenue for nutrient recovery, with the liquid fraction yielding approximately 95% at optimized conditions. Furthermore, statistical analysis using response surface methodology predicts the optimal achievable yields for hydrochar and hydrothermal liquid at 6.15% and 93.85%, respectively, obtained at 320 °C for 200 min.


Assuntos
Perda e Desperdício de Alimentos , Eliminação de Resíduos , Alimentos , Ácidos Graxos , Temperatura , Carbono
2.
Materials (Basel) ; 15(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35160890

RESUMO

The proof-of-the-concept of application of low-temperature food waste biochars for the anaerobic digestion (AD) of food waste (the same substrate) was tested. The concept assumes that residual heat from biogas utilization may be reused for biochar production. Four low-temperature biochars produced under two pyrolytic temperatures 300 °C and 400 °C and under atmospheric and 15 bars pressure with 60 min retention time were used. Additionally, the biochar produced during hydrothermal carbonization (HTC) was tested. The work studied the effect of a low biochar dose (0.05 gBC × gTSsubstrate-1, or 0.65 gBC × L-1) on AD batch reactors' performance. The biochemical methane potential test took 21 days, and the process kinetics using the first-order model were determined. The results showed that biochars obtained under 400 °C with atmospheric pressure and under HTC conditions improve methane yield by 3.6%. It has been revealed that thermochemical pressure influences the electrical conductivity of biochars. The biomethane was produced with a rate (k) of 0.24 d-1, and the most effective biochars increased the biodegradability of food waste (FW) to 81% compared to variants without biochars (75%).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...