Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 90(24): 14586-14592, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30449082

RESUMO

Various catalytic and photocatalytic reactions in the liquid phase give rise to gas products. Therefore, the identification and quantification of these products are of high importance and are even essential for some reactions. In this paper, a new in situ FTIR reactor is designed and used for analyzing the gas headspace of a (photo)catalytic reaction in solution. It allows the identification and quantification of the gas-phase products of a liquid reaction under operating conditions and in real time. The new reactor has been tested in three representative photocatalytic reactions widely studied as model reactions in the liquid phase: i.e., (i) decomposition of formic acid, (ii) oxidation of methylene blue, and (iii) reduction of CO2. The validity of the results has been confirmed by analyzing the headspace at the end of the reaction using gas chromatography technique. The new reactor opens the possibility to follow online the (photo)catalyst activity. This is useful for ensuring the stability of the catalyst and studying the evolution of the selectivity during the reaction. The nondestructive behavior of the FTIR technique allows its coupling with other techniques for obtaining complementary results. The new reactor setup is easy to handle and to ship and is very efficient, which makes it very suitable for performing complementary, fast and/or preliminary studies.

2.
ACS Appl Mater Interfaces ; 10(34): 28702-28708, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30080031

RESUMO

Sub-nanometer silver clusters that exhibit discrete electronic structure with molecular-like properties are highly desirable in various technologies. However, the methods for their preparation suffer from limitations related with the reproducibility and particles uniformity and/or the possibility of the scale-up. Another critical drawback is that free sub-nanometer silver clusters tend to aggregate into larger particles. In this work, a new approach that successfully overcomes the above limitations is developed. It allows, for the first time, an ultrafast preparation of sub-nanometer silver particles with high abundance, uniformity (7 Å), and stability into the cages of nanosized zeolite crystals. The new method consists of UV excitation of a water suspension of nanozeolite containing photoactive vanadate clusters in the presence of ethanol (as an electron donor) and silver precursor. The characteristic features of sub-nanometer silver particles are presented, and the mechanism of their formation is discussed. Sub-nanometer Ag clusters exhibit exceptional photocatalytic activity and selectivity in the reforming of formic acid to H2 and CO2 under visible light.

3.
ACS Appl Mater Interfaces ; 9(21): 17846-17855, 2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-28485914

RESUMO

Cold VCl3-plasma is employed for the preparation of highly dispersed vanadium oxide clusters on nanosized zeolite. Different types of zeolites, such as EMT, FAU (z.X), and Beta, are used. The activity of the prepared catalysts is studied in the selective photooxidation of methanol under polychromatic visible and UV irradiations. The physicochemical properties and catalytic performance of plasma-treated zeolite Beta (P-V2O5@Beta) catalyst is compared with zeolite Beta (V2O5@Beta) and amorphous silica (V2O5@SiO2) impregnated vanadium oxide catalysts. Pure V2O5 is used as a reference material. The set of catalytic data shows that plasma-prepared zeolite Beta based catalyst displays the highest activity. Complementary characterization techniques including XRD, N2-sorption, FTIR, ionic exchange, pyridine adsorption, Raman, NMR, TPR, and EDX-TEM are used to study the impact of the preparation approach on the physicochemical properties and catalytic performance of photocatalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...