Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Res Rev ; 41(5): 2841-2886, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34106485

RESUMO

Atremorine is a novel bioproduct obtained by nondenaturing biotechnological processes from a genetic species of Vicia faba. Atremorine is a potent dopamine (DA) enhancer with powerful effects on the neuronal dopaminergic system, acting as a neuroprotective agent in Parkinson's disease (PD). Over 97% of PD patients respond to a single dose of Atremorine (5 g, p.o.) 1 h after administration. This response is gender-, time-, dose-, and genotype-dependent, with optimal doses ranging from 5 to 20 g/day, depending upon disease severity and concomitant medication. Drug-free patients show an increase in DA levels from 12.14 ± 0.34 pg/ml to 6463.21 ± 1306.90 pg/ml; and patients chronically treated with anti-PD drugs show an increase in DA levels from 1321.53 ± 389.94 pg/ml to 16,028.54 ± 4783.98 pg/ml, indicating that Atremorine potentiates the dopaminergic effects of conventional anti-PD drugs. Atremorine also influences the levels of other neurotransmitters (adrenaline, noradrenaline) and hormones which are regulated by DA (e.g., prolactin, PRL), with no effect on serotonin or histamine. The variability in Atremorine-induced DA response is highly attributable to pharmacogenetic factors. Polymorphic variants in pathogenic (SNCA, NUCKS1, ITGA8, GPNMB, GCH1, BCKDK, APOE, LRRK2, ACMSD), mechanistic (DRD2), metabolic (CYP2D6, CYP2C9, CYP2C19, CYP3A4/5, NAT2), transporter (ABCB1, SLC6A2, SLC6A3, SLC6A4) and pleiotropic genes (APOE) influence the DA response to Atremorine and its psychomotor and brain effects. Atremorine enhances DNA methylation and displays epigenetic activity via modulation of the pharmacoepigenetic network. Atremorine is a novel neuroprotective agent for dopaminergic neurons with potential prophylactic and therapeutic activity in PD.


Assuntos
Arilamina N-Acetiltransferase , Doença de Parkinson , Dopamina , Proteínas da Membrana Plasmática de Transporte de Dopamina , Humanos , Levodopa , Glicoproteínas de Membrana , Neuroproteção , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Farmacogenética , Proteínas da Membrana Plasmática de Transporte de Serotonina
2.
Pharmaceuticals (Basel) ; 14(4)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33920985

RESUMO

BACKGROUND: Mood disorders represent a risk factor for dementia and are present in over 60% of cases with Alzheimer's disease (AD). More than 80% variability in drug pharmacokinetics and pharmacodynamics is associated with pharmacogenetics. METHODS: Anxiety and depression symptoms were assessed in 1006 patients with dementia (591 females, 415 males) and the influence of pathogenic (APOE) and metabolic (CYP2D6, CYP2C19, and CYP2C9) gene variants on the therapeutic outcome were analyzed after treatment with a multifactorial regime in a natural setting. RESULTS AND CONCLUSIONS: (i) Biochemical, hematological, and metabolic differences may contribute to changes in drug efficacy and safety; (ii) anxiety and depression are more frequent and severe in females than males; (iii) both females and males respond similarly to treatment, showing significant improvements in anxiety and depression; (iv) APOE-3 carriers are the best responders and APOE-4 carriers tend to be the worst responders to conventional treatments; and (v) among CYP2D6, CYP2C19, and CYP2C9 genophenotypes, normal metabolizers (NMs) and intermediate metabolizers (IMs) are significantly better responders than poor metabolizers (PMs) and ultra-rapid metabolizers (UMs) to therapeutic interventions that modify anxiety and depression phenotypes in dementia. APOE-4 carriers and CYP-related PMs and UMs deserve special attention for their vulnerability and poor response to current treatments.

3.
Planta Med ; 85(17): 1351-1362, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31559607

RESUMO

Atremorine is a novel bioproduct with neuroprotective effects on dopaminergic neurons and a natural L-DOPA donor in Parkinson's disease (PD). In the present study, we show the effects of a single dose of Atremorine (5 g, p. o.) on plasma dopamine (DA) response and brain function in PD (n = 183) and the influence that pathogenic (LRRK2), metabolic (CYP2D5, CYP2C9, CYP2C19, CYP3A5, NAT2), transporter (ABCB1), pleiotropic (APOE), and detoxifying genes (CYP1B1, GSTT1, GSTP1, GSTM1, SOD2) involved in the pharmacogenetic network exerts on Atremorine-induced DA response. Over 90% of PD patients at diagnosis show plasma DA levels below 20 pg/mL. Atremorine induces DA synthesis causing a significant increase in plasma DA levels 1 h after administration in practically 100% of patients. Females tend to show lower basal DA levels than males and the response of DA to Atremorine is stronger in males than in females. Atremorine-induced DA response is pharmacogenotype-specific and lasts from 6 - 12 h depending upon the pharmacogenetic profile of each patient. Genetic variants in pathogenic genes, metabolic genes, and genes involved in the detoxification processes affect the response of DA to Atremorine in a genotype-specific manner. Atremorine or any of its bioactive components can cross the blood-brain barrier and improve brain function and motor function, as revealed by the reduction in slow wave activity in brain mapping and psychometric assessment, respectively. Atremorine is a selective neuroprotective agent for dopaminergic neurons with prophylactic and therapeutic potential in PD.


Assuntos
Produtos Biológicos/uso terapêutico , Dopamina/sangue , Levodopa/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Transportadores de Cassetes de Ligação de ATP/genética , Sistema Enzimático do Citocromo P-450/genética , Eletroencefalografia , Feminino , Pleiotropia Genética , Variação Genética , Técnicas de Genotipagem , Glutationa Transferase/genética , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/sangue , Doença de Parkinson/genética , Vicia faba/química
4.
CNS Neurol Disord Drug Targets ; 15(2): 141-241, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26831267

RESUMO

Dementia represents a major problem of health and disability, with a relevant economic impact on our society. Despite important advances in pathogenesis, diagnosis and treatment, its primary causes still remain elusive, accurate biomarkers are not well characterized, and the available pharmacological treatments are not cost-effective. Alzheimer disease (AD), the most prevalent form of dementia, is a polygenic/multifactorial/complex disorder in which hundreds of defective genes distributed across the human genome may contribute to its pathogenesis. Diverse environmental factors, cerebrovascular dysfunction, and epigenetic phenomena, together with structural and functional genomic dysfunctions lead to amyloid deposition, neurofibrillary tangle formation and premature neuronal death, the major neuropathological hallmarks of AD. For the past 20 years, over 1,000 different compounds have been studied as potential candidate drugs for the treatment of AD. About 50% of these substances are novel molecules obtained from natural sources. The candidate compounds can be classified according to their pharmacological properties and/or the AD-related pathogenic cascade to which they are addressed to halt disease progression. In addition to the Food and Drug Administration (FDA)-approved drugs since 1993 (tacrine, donepezil, rivastigmine, galantamine, memantine), most candidate strategies fall into 6 major categories: (i) novel cholinesterase inhibitors and neurotransmitter regulators, (ii) anti-amyloid beta (Aß) treatments (amyloid-ß protein precursor (APP) regulators, Aß breakers, active and passive immunotherapy with vaccines and antibodies, ß - and γ - secretase inhibitors or modulators), (iii) anti-tau treatments, (iv) pleiotropic products (most of them of natural origin), (v) epigenetic intervention, and (vi) combination therapies. The implementation of pharmacogenomic strategies will contribute to optimize drug development and therapeutics in AD and related disorders.


Assuntos
Inibidores da Colinesterase/uso terapêutico , Demência/tratamento farmacológico , Descoberta de Drogas/tendências , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Animais , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Demência/diagnóstico , Demência/metabolismo , Descoberta de Drogas/métodos , Humanos , Imunoterapia/métodos , Imunoterapia/tendências
5.
Methods Mol Biol ; 1175: 323-556, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25150875

RESUMO

Alzheimer's disease (AD) is a major problem of health and disability, with a relevant economic impact on our society. Despite important advances in pathogenesis, diagnosis, and treatment, its primary causes still remain elusive, accurate biomarkers are not well characterized, and the available pharmacological treatments are not cost-effective. As a complex disorder, AD is a polygenic and multifactorial clinical entity in which hundreds of defective genes distributed across the human genome may contribute to its pathogenesis. Diverse environmental factors, cerebrovascular dysfunction, and epigenetic phenomena, together with structural and functional genomic dysfunctions, lead to amyloid deposition, neurofibrillary tangle formation, and premature neuronal death, the major neuropathological hallmarks of AD. Future perspectives for the global management of AD predict that genomics and proteomics may help in the search for reliable biomarkers. In practical terms, the therapeutic response to conventional drugs (cholinesterase inhibitors, multifactorial strategies) is genotype-specific. Genomic factors potentially involved in AD pharmacogenomics include at least five categories of gene clusters: (1) genes associated with disease pathogenesis; (2) genes associated with the mechanism of action of drugs; (3) genes associated with drug metabolism (phase I and II reactions); (4) genes associated with drug transporters; and (5) pleiotropic genes involved in multifaceted cascades and metabolic reactions. The implementation of pharmacogenomic strategies will contribute to optimize drug development and therapeutics in AD and related disorders.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Farmacogenética , Doença de Alzheimer/etiologia , Demência/tratamento farmacológico , Demência/genética , Descoberta de Drogas , Estudos de Associação Genética , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/genética , Medicina de Precisão
6.
PLoS One ; 7(9): e46289, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23050006

RESUMO

BACKGROUND: The apolipoprotein E epsilon 4 (APOE-4) is associated with a genetic vulnerability to Alzheimer's disease (AD) and with AD-related abnormalities in cortical rhythms. However, it is unclear whether APOE-4 is linked to a specific pattern of intrinsic functional disintegration of the brain after the development of the disease or during its different stages. This study aimed at identifying spatial patterns and effects of APOE genotype on resting-state oscillations and functional connectivity in patients with AD, using a physiological connectivity index called "lagged phase synchronization". METHODOLOGY/PRINCIPAL FINDINGS: Resting EEG was recorded during awake, eyes-closed state in 125 patients with AD and 60 elderly controls. Source current density and functional connectivity were determined using eLORETA. Patients with AD exhibited reduced parieto-occipital alpha oscillations compared with controls, and those carrying the APOE-4 allele had reduced alpha activity in the left inferior parietal and temporo-occipital cortex relative to noncarriers. There was a decreased alpha2 connectivity pattern in AD, involving the left temporal and bilateral parietal cortex. Several brain regions exhibited increased lagged phase synchronization in low frequencies, specifically in the theta band, across and within hemispheres, where temporal lobe connections were particularly compromised. Areas with abnormal theta connectivity correlated with cognitive scores. In patients with early AD, we found an APOE-4-related decrease in interhemispheric alpha connectivity in frontal and parieto-temporal regions. CONCLUSIONS/SIGNIFICANCE: In addition to regional cortical dysfunction, as indicated by abnormal alpha oscillations, there are patterns of functional network disruption affecting theta and alpha bands in AD that associate with the level of cognitive disturbance or with the APOE genotype. These functional patterns of nonlinear connectivity may potentially represent neurophysiological or phenotypic markers of AD, and aid in early detection of the disorder.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Encéfalo/fisiologia , Idoso , Encéfalo/metabolismo , Eletroencefalografia , Feminino , Genótipo , Humanos , Masculino , Lobo Parietal/metabolismo , Lobo Parietal/fisiopatologia
7.
Int J Alzheimers Dis ; 2012: 518901, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22482072

RESUMO

Dementia is a major problem of health in developed societies. Alzheimer's disease (AD), vascular dementia, and mixed dementia account for over 90% of the most prevalent forms of dementia. Both genetic and environmental factors are determinant for the phenotypic expression of dementia. AD is a complex disorder in which many different gene clusters may be involved. Most genes screened to date belong to different proteomic and metabolomic pathways potentially affecting AD pathogenesis. The ε4 variant of the APOE gene seems to be a major risk factor for both degenerative and vascular dementia. Metabolic factors, cerebrovascular disorders, and epigenetic phenomena also contribute to neurodegeneration. Five categories of genes are mainly involved in pharmacogenomics: genes associated with disease pathogenesis, genes associated with the mechanism of action of a particular drug, genes associated with phase I and phase II metabolic reactions, genes associated with transporters, and pleiotropic genes and/or genes associated with concomitant pathologies. The APOE and CYP2D6 genes have been extensively studied in AD. The therapeutic response to conventional drugs in patients with AD is genotype specific, with CYP2D6-PMs, CYP2D6-UMs, and APOE-4/4 carriers acting as the worst responders. APOE and CYP2D6 may cooperate, as pleiotropic genes, in the metabolism of drugs and hepatic function. The introduction of pharmacogenetic procedures into AD pharmacological treatment may help to optimize therapeutics.

8.
J Neural Transm (Vienna) ; 115(5): 683-92, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18273537

RESUMO

Changes in quantitative EEG (qEEG) recordings over a 1-year period and the effects of Cerebrolysin (Cere) on qEEG slowing and cognitive performance were investigated in postacute moderate-severe traumatic brain injury (TBI) patients. Time-related changes in qEEG activity frequency bands (increases of alpha and beta, and reductions of theta and delta relative power) and in qEEG slowing (reduction of EEG power ratio) were statistically significant in patients with a disease progress of less than 2 years at baseline, but not in those patients having a longer disease progress time. Slowing of qEEG activity was also found to be significantly reduced in TBI patients after 1 month of treatment with Cere and 3 months later. Therefore, Cere seems to accelerate the time-related reduction of qEEG slowing occurring in untreated patients. The decrease of qEEG slowing induced by Cere correlated with the improvement of attention and working memory. Results of this exploratory study suggest that Cere might improve the functional recovery after brain injury and encourage the conduction of further controlled clinical trials.


Assuntos
Aminoácidos/uso terapêutico , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/fisiopatologia , Eletroencefalografia , Fármacos Neuroprotetores/uso terapêutico , Adulto , Mapeamento Encefálico , Cognição/efeitos dos fármacos , Eletrocardiografia/métodos , Feminino , Seguimentos , Humanos , Masculino , Testes Neuropsicológicos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...