Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tissue Eng Part A ; 30(1-2): 45-60, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37897061

RESUMO

Rotator cuff tear is a significant problem that leads to poor clinical outcomes due to muscle degeneration after injury. The objective of this study was to synergistically increase the number of proregenerative cells recruited to injure rotator cuff muscle through a novel dual treatment system, consisting of a bone marrow mobilizing agent (VPC01091), hypothesized to "push" prohealing cells into the blood, and localized delivery of stromal cell-derived factor-1α (SDF-1α), to "pull" the cells to the injury site. Immediately after rotator cuff tendon injury in rat, the mobilizing agent was delivered systemically, and SDF-1α-loaded heparin-based microparticles were injected into the supraspinatus muscle. Regenerative and degenerative changes to supraspinatus muscle and the presence of inflammatory/immune cells, mesenchymal stem cells (MSCs), and satellite cells were assessed via flow cytometry and histology for up to 21 days. After dual treatment, significantly more MSCs (31.9 ± 8.0% single cells) and T lymphocytes (6.7 ± 4.3 per 20 × field of view) were observed in supraspinatus muscle 7 days after injury and treatment compared to injury alone (14.4 ± 6.5% single cells, 1.2 ± 0.7 per 20 × field of view), in addition to an elevated M2:M1 macrophage ratio (3.0 ± 0.5), an indicator of a proregenerative environment. These proregenerative cellular changes were accompanied by increased nascent fiber formation (indicated by embryonic myosin heavy chain staining) at day 7 compared to SDF-1α treatment alone, suggesting that this method may be a promising strategy to influence the early cellular response in muscle and promote a proregenerative microenvironment to increase muscle healing after severe rotator cuff tear.


Assuntos
Lesões do Manguito Rotador , Manguito Rotador , Ratos , Animais , Manguito Rotador/patologia , Lesões do Manguito Rotador/terapia , Lesões do Manguito Rotador/patologia , Quimiocina CXCL12/farmacologia , Medula Óssea , Fibras Musculares Esqueléticas
2.
ACS Biomater Sci Eng ; 4(4): 1241-1250, 2018 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-29682605

RESUMO

The immune response to biomaterial implants critically regulates functional outcomes such as vascularization, transplant integration/survival, and fibrosis. To create "immunologically smart" materials, the host-material response may be engineered to optimize the recruitment of pro-regenerative leukocyte subsets which mature into corresponding wound-healing macrophages. We have recently identified a unique feature of pro-regenerative Ly6Clow monocytes that is a higher expression of both the bioactive lipid receptor sphingosine-1-phosphate receptor 3 (S1PR3) and the stromal derived factor-1α (SDF-1α) receptor CXCR4. Therefore, we designed a bifunctional hydrogel to harnesses a mechanistic synergy between these signaling axes to enhance the recruitment of endogenous pro-regenerative monocytes. To overcome the challenge of codelivering two physiochemically distinct molecules-a large hydrophilic protein and hydrophobic small molecule-we engineered a dual affinity hydrogel that exploits the growth factor affinity of a heparin derivative (Hep-N) and lipid chaperone activity of albumin. The sphingosine analog FTY720 and SDF-1α are successfully loaded and coreleased from the Hep-N-functionalized PEG-DA hydrogels while maintaining bioactivity. Placement of these hydrogels into a murine partial thickness skin wound demonstrates that corelease of FTY720 and SDF-1α yields superior recruitment of myeloid cells to the implant interface compared to either factor alone. Although in vivo delivery of FTY720 or SDF-1α individually promotes the enhanced recruitment of Ly-6Clow anti-inflammatory monocytes, codelivery enhances the early accumulation and persistence of the differentiated wound healing CD206+ macrophages in the tissue surrounding the gel. Co-delivery similarly promoted the synergistic expansion of vasculature adjacent to the implant, a key step in tissue healing. Taken together, these findings suggest that the combination of chemotactic molecules may provide additional maturation signals to the infiltrating leukocytes to facilitate macrophage transition and vascular network expansion, thus, ultimately, potentiating tissue repair. The coupling of multiple pro-regenerative biological cues provides a foundation for more fine-tuned immunoregenerative modulation to facilitate tissue repair.

3.
Biomater Sci ; 6(5): 1159-1167, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29564448

RESUMO

As a potential treatment for osteoarthritis (OA), we have developed injectable and hydrolytically degradable heparin-based biomaterials with tunable sulfation for the intra-articular delivery of tumor necrosis factor-alpha stimulated gene-6 (TSG-6), a protein known to inhibit plasmin which may degrade extracellular matrix within OA joints. We first assessed the effect of heparin sulfation on TSG-6 anti-plasmin activity and found that while fully sulfated (Hep) and heparin desulfated at only the N position (Hep-N) significantly enhanced TSG-6 bioactivity in vitro, fully desulfated heparin (Hep-) had no effect, indicating that heparin sulfation plays a significant role in modulating TSG-6 bioactivity. Next, TSG-6 loaded, degradable 10 wt% Hep-N microparticles (MPs) were delivered via intra-articular injection into the knee at 1, 7, and 15 days following medial meniscal transection (MMT) injury in a rat model. After 21 days, cartilage thickness, volume, and attenuation were significantly increased with soluble TSG-6, indicating degenerative changes. In contrast, no significant differences were observed with TSG-6 loaded MP treatment, demonstrating that TSG-6 loaded MPs reduced cartilage damage following MMT injury. Ultimately, our results indicate that Hep-N can enhance TSG-6 anti-plasmin activity and that Hep-N-based biomaterials may be an effective method for TSG-6 delivery to treat OA.


Assuntos
Moléculas de Adesão Celular/uso terapêutico , Portadores de Fármacos/química , Heparina/análogos & derivados , Osteoartrite do Joelho/tratamento farmacológico , Animais , Cartilagem/efeitos dos fármacos , Moléculas de Adesão Celular/administração & dosagem , Moléculas de Adesão Celular/farmacologia , Injeções Intra-Articulares , Masculino , Ratos , Ratos Sprague-Dawley
4.
Biomater Sci ; 4(9): 1371-80, 2016 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-27447003

RESUMO

Sustained release of anti-inflammatory agents remains challenging for small molecule drugs due to their low molecular weight and hydrophobicity. Therefore, the goal of this study was to control the release of a small molecule anti-inflammatory agent, crystal violet (CV), from hydrogels fabricated with heparin, a highly sulfated glycosaminoglycan capable of binding positively-charged molecules such as CV. In this system, both electrostatic interactions between heparin and CV and hydrogel degradation were tuned simultaneously by varying the level of heparin sulfation and varying the amount of dithiothreitol within hydrogels, respectively. It was found that heparin sulfation significantly affected CV release, whereby more sulfated heparin hydrogels (Hep and Hep(-N)) released CV with near zero-order release kinetics (R-squared values between 0.96-0.99). Furthermore, CV was released more quickly from fast-degrading hydrogels than slow-degrading hydrogels, providing a method to tune total CV release between 5-15 days while maintaining linear release kinetics. In particular, N-desulfated heparin hydrogels exhibited efficient CV loading (∼90% of originally included CV), near zero-order CV release kinetics, and maintenance of CV bioactivity after release, making this hydrogel formulation a promising CV delivery vehicle for a wide range of inflammatory diseases.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Heparina/química , Hidrogéis/química , Hidrogéis/metabolismo , Enxofre/química , Hidrogel de Polietilenoglicol-Dimetacrilato , Cinética
5.
J Mater Chem B ; 3(40): 8001-8009, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-27785363

RESUMO

Glycosaminoglycans (GAGs) such as heparin are promising materials for growth factor delivery due to their ability to efficiently bind positively charged growth factors including bone morphogenetic protein-2 (BMP-2) through their negatively charged sulfate groups. Therefore, the goal of this study was to examine BMP-2 release from heparin-based microparticles (MPs) after first, incorporating a hydrolytically degradable crosslinker and varying heparin content within MPs to alter MP degradation and second, altering the sulfation pattern of heparin within MPs to vary BMP-2 binding and release. Using varied MP formulations, it was found that the time course of MP degradation for 1 wt% heparin MPs was ~4 days slower than 10 wt% heparin MPs, indicating that MP degradation was dependent on heparin content. After incubating 100 ng BMP-2 with 0.1 mg MPs, most MP formulations loaded BMP-2 with ~50% efficiency and significantly more BMP-2 release (60% of loaded BMP-2) was observed from more sulfated heparin MPs (MPs with ~100% and 80% of native sulfation). Similarly, BMP-2 bioactivity in more sulfated heparin MP groups was at least four-fold higher than soluble BMP-2 and less sulfated heparin MP groups, as determined by an established C2C12 cell alkaline phosphatase (ALP) assay. Ultimately, the two most sulfated 10 wt% heparin MP formulations were able to efficiently load and release BMP-2 while enhancing BMP-2 bioactivity, making them promising candidates for future growth factor delivery applications.

6.
ACS Appl Mater Interfaces ; 5(13): 5947-53, 2013 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-23755861

RESUMO

Biodegradable polyelectrolyte surfaces for gene delivery were created through electrospinning of biodegradable polycations combined with iterative solution-based multilayer coating. Poly(ß-amino ester) (PBAE) poly(1,4-butanediol diacrylate-co-4-amino-1-butanol) end-capped with 1-(3-aminopropyl)-4-methylpiperazine was utilized because of its ability to electrostatically interact with anionic molecules like DNA, its biodegradability, and its low cytotoxicity. A new DNA release system was developed for sustained release of DNA over 24 h, accompanied by high exogenous gene expression in primary human glioblastoma (GB) cells. Electrospinning a different PBAE, poly(1,4-butanediol diacrylate-co-4,4'-trimethylenedipiperidine), and its combination with polyelectrolyte 1-(3-aminopropyl)-4-methylpiperazine end-capped poly(1,4-butanediol diacrylate-co-4-amino-1-butanol)-based multilayers are promising for DNA release and intracellular delivery from a surface.


Assuntos
DNA/química , Polímeros/química , Transfecção/instrumentação , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , DNA/genética , Humanos , Polímeros/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...