Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 66(3): 1553-60, 2006 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-16452212

RESUMO

Inactivation of the von Hippel-Lindau (VHL) tumor suppressor gene is responsible for the development of renal cell cancers (RCC), pheochromocytomas, and tumors in other organs. The best known function of VHL protein (VHL) is to target the hypoxia-inducible factor (HIF) for proteasome degradation. VHL is also required for the establishment of an epithelial-like cell shape in otherwise fibroblastic-like RCC cell lines. However, the underlying mechanisms and whether this is linked to HIF remain undetermined. Because the breakage of intercellular junctions induces a fibroblastic-like phenotype in multiple cancer cell models, we hypothesized that VHL may be required for the assembly of intercellular junctions in RCC cells. Our experiments showed that VHL in RCC cell lines is necessary for the normal organization of adherens and tight intercellular junctions, the maintenance of cell polarity, and control of paracellular permeability. Additionally, 786-O cells reconstituted with wild-type VHL and with a constitutively active form of HIF-2alpha did not reproduce any of the phenotypic alterations of VHL-negative cells. In summary, we show that VHL inactivation in RCC cells disrupts intercellular junctions and cell shape through HIF-independent events, supporting the concept that VHL has additional functions beside its role in the regulation of HIF.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Carcinoma de Células Renais/patologia , Junções Intercelulares/patologia , Neoplasias Renais/patologia , Proteína Supressora de Tumor Von Hippel-Lindau/fisiologia , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Linhagem Celular Tumoral , Fibronectinas/antagonistas & inibidores , Fibronectinas/metabolismo , Humanos , Junções Intercelulares/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Transfecção , Proteína Supressora de Tumor Von Hippel-Lindau/biossíntese , Proteína Supressora de Tumor Von Hippel-Lindau/genética
2.
J Biol Chem ; 280(25): 24238-44, 2005 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-15849364

RESUMO

Hypoxia-inducible factors (HIF) are heterodimeric (alpha/beta) transcription factors that play a fundamental role in cellular adaptation to low oxygen tension. In the presence of oxygen, the HIF-alpha subunit becomes hydroxylated at specific prolyl residues by prolyl hydroxylases. This post-translational modification is recognized by the von Hippel-Lindau (VHL) protein, which targets HIF-alpha for degradation. In the absence of oxygen, HIF-alpha hydroxylation is compromised and this subunit is stabilized. We have previously shown that the hypoxia-induced accumulation of HIF-alpha protein is strongly impaired by the inhibitor of diacylglycerol kinase, R59949. Here, we have investigated the mechanisms through which this inhibitor exerts its effect. We found that R59949 inhibits the accumulation of HIF-1/2alpha protein without affecting the expression of their mRNAs. We also determined that R59949 could only block the accumulation of HIF-alpha in the presence of VHL protein. In agreement with this, the binding of VHL to endogenous HIF-alpha was significantly enhanced after R59949 treatment, even under hypoxic conditions. In addition, we found that R59949 could stimulate prolyl hydroxylase both at 21% O2 as well as at 1% O2. Taken together, these results reveal that R59949 is an activator of HIF prolyl hydroxylases. This is of particular interest when we consider that, to date, mainly inhibitors of these enzymes have been described.


Assuntos
Diacilglicerol Quinase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Piperidinas/farmacologia , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Quinazolinas/farmacologia , Linhagem Celular , Ativação Enzimática , Humanos , Imunoprecipitação , Pró-Colágeno-Prolina Dioxigenase/genética , Quinazolinonas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau
3.
Biochem Biophys Res Commun ; 315(1): 44-50, 2004 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-15013423

RESUMO

Hypoxia-inducible factor 1 (HIF-1) is a critical transcription factor for the adaptation to lowered oxygen environments. We have previously reported that hypoxia induced phosphatidic acid (PA) accumulation through diacylglycerol kinase (DGK) activity and provided evidence that this PA production regulated HIF-1 expression. Here we report that hypoxia also produces a marked intracellular accumulation of diacylglycerol (DAG) in different cell types. The previously proposed inhibitor of phosphatidylcholine phospholipase C (PC-PLC)/sphingomyelin synthase (SMS) activities, D609, specifically abrogates both hypoxia-dependent DAG accumulation and hypoxia-induced HIF-1 expression. We show that DAG-dependent protein kinase C (PKC) isoforms do not play an essential role in the regulation of HIF-1 expression. D609 inhibits PA accumulation triggered by hypoxia, suggesting that DAG could act as substrate for its conversion into PA by DGK upon these conditions. Therefore, this work provides novel evidence for the existence of DAG/PA-dependent intracellular mechanisms involved in the regulation of HIF-1 expression.


Assuntos
Hipóxia Celular/fisiologia , Diglicerídeos/metabolismo , Fatores de Transcrição/metabolismo , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Cálcio/química , Cálcio/metabolismo , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular , Diacilglicerol Quinase/metabolismo , Diglicerídeos/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Células HeLa , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia , Indóis/farmacologia , Luciferases/metabolismo , Norbornanos , Ácidos Fosfatídicos/biossíntese , Fosfatidilinositol Diacilglicerol-Liase/metabolismo , Inibidores de Fosfodiesterase/farmacologia , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Subunidades Proteicas , Tiocarbamatos , Tionas/farmacologia , Fatores de Transcrição/química , Fatores de Transcrição/genética , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/fisiologia , Transfecção , Transferases (Outros Grupos de Fosfato Substituídos)/antagonistas & inibidores , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Fosfolipases Tipo C/antagonistas & inibidores , Fosfolipases Tipo C/metabolismo
4.
J Biol Chem ; 279(10): 9504-11, 2004 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-14681229

RESUMO

Hypoxia-inducible factors (HIF-1/HIF-2) govern the expression of critical genes for cellular adaptation to low oxygen tensions. We have previously reported that the intracellular level of phosphatidic acid (PA) rises in response to hypoxia (1% O(2)). In this report, we have explored whether components of the canonical HIF/von Hippel-Lindau (VHL) pathway are involved in the induction of PA. We found that hypoxia induces PA in a cell line constitutively expressing a stable version of HIF-1alpha. PA induction was also found in HIF-1alpha- and 2alpha-negative CHO Ka13 cells, as well as in HIF-beta-negative HepaC4 cells. These data indicate that HIF activity is neither sufficient nor necessary for oxygen-dependent PA accumulation. PA generation was also detected in cells deficient for the tumor suppressor VHL, indicating that the presence of VHL was not required for the induction of PA. Here we show that PA accumulation also occurs at moderate hypoxia (5% O(2)), although to a lesser extent to that seen at 1% O(2), revealing that PA is induced at the same hypoxia range required to activate HIF-1. Prolyl hydroxylases (PHD) and asparaginyl hydroxylase (FIH) belong to the iron (II) and 2-oxoglutarate-dependent dioxygenase family and have been proposed as oxygen sensors involved in the regulation of HIFs. Chemical inhibition of these activities by treatment with iron chelators or 2-oxoglutarate analogs also results in a marked PA accumulation similar to that observed in hypoxia. Together these data show that PA accumulation in response to hypoxia is both HIF-1/2- and VHL-independent and indicate a role of iron (II)-2-oxoglutarate-dependent dioxygenases in the oxygen-sensing mechanisms involved in hypoxia-driven phospholipid regulation.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Oxigenases de Função Mista/metabolismo , Proteínas Nucleares/fisiologia , Ácidos Fosfatídicos/biossíntese , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Fatores de Transcrição/fisiologia , Hipóxia Celular/fisiologia , Linhagem Celular , Humanos , Fator 1 Induzível por Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia , Doença de von Hippel-Lindau/metabolismo
5.
J Biol Chem ; 278(49): 48690-5, 2003 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-14506252

RESUMO

Most of the genes induced by hypoxia are regulated by a family of transcription factors termed hypoxia-inducible factors (HIF). Under normoxic conditions, HIFalpha proteins are very unstable due to hydroxylation by a recently described family of proline hydroxylases termed EGL-Nine homologs (EGLN). Upon hydroxylation, HIFalpha is recognized by the product of the tumor suppressor vhl and targeted for proteosomal degradation. Since EGLNs require oxygen to catalyze HIF hydroxylation, this reaction does not efficiently occur under low oxygen tension. Thus, under hypoxia, HIFalpha escapes from degradation and transcribes target genes. The mRNA levels of two of the three EGLNs described to date are induced by hypoxia, suggesting that they might be novel HIF target genes; however, no proof for this hypothesis has been reported. Here we show that the induction of EGLN1 and -3 by hypoxia is found in a wide range of cell types. The basal levels of EGLN3 are always well below those of EGLN1 and EGLN2, and its induction by hypoxia is larger than that found for EGLN1. The inhibitor of transcription, actinomycin D, prevents the increase of EGLN3 mRNA induced by hypoxia, indicating that it is due to enhanced gene expression. Interestingly, EGLN1 and EGLN3 mRNAs were also triggered by EGLN inhibitors, suggesting the involvement of HIFalpha in the control of its transcription. In agreement with this possibility, pVHL-deficient cell lines, which present high HIF activity under normoxia, also showed dramatically increased normoxic levels of EGLN3. Moreover, the overexpression of an oxygen-insensitive mutant form of HIFalpha resulted in increased normoxic levels of EGLN3 mRNA. Finally, hypoxic induction of EGLNs was not observed in cells lacking functional HIFalpha.


Assuntos
Regulação da Expressão Gênica/fisiologia , Oxigênio/metabolismo , Pró-Colágeno-Prolina Dioxigenase/genética , Transcrição Gênica/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Ubiquitina-Proteína Ligases/fisiologia , Linhagem Celular , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína Supressora de Tumor Von Hippel-Lindau
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...