Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36676218

RESUMO

Non-contact mapping of magnetic fields produced by the human heart muscle requires the application of arrays of miniature and highly sensitive magnetic field sensors. In this article, we describe a MEMS technology of laminated magnetoelectric heterostructures comprising a thin piezoelectric lithium niobate single crystal and a film of magnetostrictive metglas. In the former, a ferroelectric bidomain structure is created using a technique developed by the authors. A cantilever is formed by microblasting inside the lithium niobate crystal. Metglas layers are deposited by magnetron sputtering. The quality of the metglas layers was assessed by XPS depth profiling and TEM. Detailed measurements of the magnetoelectric effect in the quasistatic and dynamic modes were performed. The magnetoelectric coefficient |α32| reaches a value of 492 V/(cm·Oe) at bending resonance. The quality factor of the structure was Q = 520. The average phase amounted to 93.4° ± 2.7° for the magnetic field amplitude ranging from 12 to 100 pT. An AC magnetic field detection limit of 12 pT at a resonance frequency of 3065 Hz was achieved which exceeds by a factor of 5 the best value for magnetoelectric MEMS lead-free composites reported in the literature. The noise level of the magnetoelectric signal was 0.47 µV/Hz1/2. Ways to improve the sensitivity of the developed sensors to the magnetic field for biomedical applications are indicated.

2.
Sensors (Basel) ; 20(24)2020 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-33322153

RESUMO

The article is devoted to the theoretical and experimental study of a magnetoelectric (ME) current sensor based on a gradient structure. It is known that the use of gradient structures in magnetostrictive-piezoelectric composites makes it possible to create a self-biased structure by replacing an external magnetic field with an internal one, which significantly reduces the weight, power consumption and dimensions of the device. Current sensors based on a gradient bidomain structure LiNbO3 (LN)/Ni/Metglas with the following layer thicknesses: lithium niobate-500 µm, nickel-10 µm, Metglas-29 µm, operate on a linear section of the working characteristic and do not require the bias magnetic field. The main characteristics of a contactless ME current sensor: its current range measures up to 10 A, it has a sensitivity of 0.9 V/A, its current consumption is not more than 2.5 mA, and its linearity is maintained to an accuracy of 99.8%. Some additional advantages of a bidomain lithium niobate-based current sensor are the increased sensitivity of the device due to the use of the bending mode in the electromechanical resonance region and the absence of a lead component in the device.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...