Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Quant Imaging Med Surg ; 11(10): 4258-4268, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34603981

RESUMO

BACKGROUND: Adipose tissue is a valuable biomarker. Although validation and correlation to clinical data have mostly been performed on non-enhanced scans (NES), a previous study has shown conversion of values of contrast enhanced scan (CES) into those of NES to be feasible with segmentation of the entire abdomen (3D-segmentation). In this study we analyzed if density and area of abdominal adipose tissue segmented in a single slice (2D-segmentation) of CES may be converted into that of NES. Furthermore, we compared the precision of conversion between 2D- and 3D-segmentation. METHODS: Thirty-one multi-phasic abdominal CT examinations at identical scan settings were retrospectively included. Exams included NES (n=31), arterial (ART) (n=23), portal-venous (PVN) (n=10), and/or venous scan (VEN) (n=31). Density and area of visceral (VAT) and subcutaneous adipose tissue (SAT) were quantified semi-automatically with fixed thresholds. For conversion of values from CES into those of NES regression analyses were performed and tested. 2D- and 3D-segmentation were compared with respect to conversion accuracy (normalized deviations of converted NES values from original measurements). RESULTS: After the application of contrast medium 2D-segmented adipose tissue increased in density (max. +5.6±2.4 HU) and decreased in area (max. -10.91%) (10.47%), with few exceptions (P<0.05). This was more pronounced in later scans (VEN ≈ PVN > ART) and more marked in VAT than SAT. Density and area in CES correlated very well with NES, allowing for conversion with only small error. While converted density is slightly more precise applying 3D-segmentation, conversion error of quantity was occasionally smaller with 2D-segmentation. CONCLUSIONS: Contrast medium changes density and quantity of segmented adipose tissue in differing degrees between compartments, contrast phases and 2D- and 3D-segmentation. However, changes are fairly constant for a given compartment, contrast phase and mode of segmentation. Therefore, conversion of values into those of NES may be achieved with comparable precision for 2D- and 3D-segmentation.

2.
Quant Imaging Med Surg ; 11(2): 697-705, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33532269

RESUMO

BACKGROUND: Adipose tissue as part of body composition analysis may serve as a powerful biomarker. Validation of segmented adipose tissue and correlation to clinical data has been performed on non-enhanced scans (NES). As many patients require a contrast enhanced scan (CES) for other aspects of clinical decision making, the utility of CES for body composition analysis would be most useful. Therefore, we analyzed the influence of iodinated contrast medium (ICM) and contrast phase on the characterization and segmentation of adipose tissue. METHODS: Exams of 31 patients undergoing multi-phasic CT at identical scan settings containing an NES were retrospectively included. In addition to NES, patients received an arterial (ART) (n=23), portal-venous (PVN) (n=10), and/or venous scan (VEN) (n=31) after intravenous injection of 90 mL ICM. Density and volume of adipose tissue were quantified semi-automatically with thresholds between -190 HU and -30 HU and recorded separately for visceral (VAT) and subcutaneous adipose tissue (SAT). Density and volume of total adipose tissue (TAT) were computed. For conversion of values from CES into those of NES regression analyses were performed and tested. RESULTS: Density of adipose tissue increased after application of ICM more on later scans (VEN ≈ PVN > ART) and more markedly in VAT than SAT (VAT > TAT > SAT). Except in SAT on ART, all changes were significant (P<0.001). Measured volume of adipose tissue decreased on all CES (VEN ≈ PVN > ART) (P<0.001), but only reached statistical significance for VAT and TAT (VAT > TAT) on all CES (P<0.05). Density and volume in CES correlate extremely well with NES and may be calculated from one another [root-mean-square error (RMSE): <6 HU; <0.85 dm3]. CONCLUSIONS: Density and volume of segmented adipose tissue are altered by the injection of ICM in differing degrees between compartments and contrast phases. However, as the effect of ICM is fairly constant for a given compartment and contrast phase, values may be converted into those of NES with relative precession. This conversion allows body composition analysis to be carried out also in contrast enhanced CT examinations, e.g., for risk stratification and the comparison of the obtained results to previous studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...