Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1355268, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605704

RESUMO

Multiple stress resistant variants of Listeria monocytogenes with mutations in rpsU encoding ribosomal protein RpsU have previously been isolated after a single exposure to acid stress. These variants, including L. monocytogenes LO28 variant V14 with a complete deletion of the rpsU gene, showed upregulation of the general stress sigma factor Sigma B-mediated stress resistance genes and had a lower maximum specific growth rate than the LO28 WT, signifying a trade-off between stress resistance and fitness. In the current work V14 has been subjected to an experimental evolution regime, selecting for higher fitness in two parallel evolving cultures. This resulted in two evolved variants with WT-like fitness: 14EV1 and 14EV2. Comparative analysis of growth performance, acid and heat stress resistance, in combination with proteomics and RNA-sequencing, indicated that in both lines reversion to WT-like fitness also resulted in WT-like stress sensitivity, due to lack of Sigma B-activated stress defense. Notably, genotyping of 14EV1 and 14EV2 provided evidence for unique point-mutations in the ribosomal rpsB gene causing amino acid substitutions at the same position in RpsB, resulting in RpsB22Arg-His and RpsB22Arg-Ser, respectively. Combined with data obtained with constructed RpsB22Arg-His and RpsB22Arg-Ser mutants in the V14 background, we provide evidence that loss of function of RpsU resulting in the multiple stress resistant and reduced fitness phenotype, can be reversed by single point mutations in rpsB leading to arginine substitutions in RpsB at position 22 into histidine or serine, resulting in a WT-like high fitness and low stress resistance phenotype. This demonstrates the impact of genetic changes in L. monocytogenes' ribosomes on fitness and stress resistance.

2.
Front Microbiol ; 15: 1304325, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550865

RESUMO

Microbial population heterogeneity leads to different stress responses and growth behavior of individual cells in a population. Previously, a point mutation in the rpsU gene (rpsUG50C) encoding ribosomal protein S21 was identified in a Listeria monocytogenes LO28 variant, which leads to increased multi-stress resistance and a reduced maximum specific growth rate. However, the underlying mechanisms of these phenotypic changes remain unknown. In L. monocytogenes, the alternative sigma factor SigB regulates the general stress response, with its activation controlled by a series of Rsb proteins, including RsbR1 and anti-sigma factor RsbW and its antagonist RsbV. We combined a phenotype and proteomics approach to investigate the acid and heat stress resistance, growth rate, and SigB activation of L. monocytogenes EGDe wild type and the ΔsigB, ΔrsbV, and ΔrsbR1 mutant strains. While the introduction of rpsUG50C in the ΔsigB mutant did not induce a SigB-mediated increase in robustness, the presence of rpsUG50C in the ΔrsbV and the ΔrsbR1 mutants led to SigB activation and concomitant increased robustness, indicating an alternative signaling pathway for the SigB activation in rpsUG50C mutants. Interestingly, all these rpsUG50C mutants exhibited reduced maximum specific growth rates, independent of SigB activation, possibly attributed to compromised ribosomal functioning. In summary, the increased stress resistance in the L. monocytogenes EGDe rpsUG50C mutant results from SigB activation through an unknown mechanism distinct from the classical stressosome and RsbV/RsbW partner switching model. Moreover, the reduced maximum specific growth rate of the EGDe rpsUG50C mutant is likely unrelated to SigB activation and potentially linked to impaired ribosomal function.

3.
Yeast ; 40(12): 628-639, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37930115

RESUMO

Vitamin B1 , also known as thiamine, is an important vitamin that, besides its role in human health, is converted to meat aromas upon exposure to high temperatures. Therefore, it is relevant for the production of vegan meat-like flavours. In this study, we investigated 48 Saccharomyces cerevisiae strains for their thiamine production capacity by measuring the intracellular and extracellular vitamins produced in the thiamine-free minimal medium after 72 h of growth. We found approximately an 8.2-fold difference in overall thiamine yield between the highest and lowest-producing strains. While the highest thiamine yield was 254.6 nmol/L, the highest thiamine-specific productivity was 160.9 nmol/g DW. To assess whether extracellular thiamine was due to leakage caused by cell damage, we monitored membrane permeabilization using propidium iodide (PI) staining and flow cytometry. We found a good correlation between the percentage of extracellular thiamine and PI-stained cells (Spearman's ρ = 0.85). Finally, we compared S. cerevisiae CEN.PK113-7D (wild type [WT]) to three strains evolved in a thiamine-free medium for their thiamine production capacity. On average, we saw an increase in the amount of thiamine produced. One of the evolved strains had a 49% increase in intracellular thiamine-specific productivity and a biomass increase of 20% compared with the WT. This led to a total increase in thiamine yield of 60% in this strain, reaching 208 nmol/L. This study demonstrated that it is possible to achieve thiamine overproduction in S. cerevisiae via strain selection and adaptive laboratory evolution.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/metabolismo , Tiamina , Proteínas de Saccharomyces cerevisiae/metabolismo , Vitaminas
4.
Microb Biotechnol ; 15(4): 1281-1295, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35229476

RESUMO

Gram-positive bacterial extracellular membrane vesicles (EVs) have been drawing more attention in recent years. However, mechanistic insights are still lacking on how EVs are released through the cell walls in Gram-positive bacteria. In this study, we characterized underlying mechanisms of EV production and provide evidence for a role of prophage activation in EV release using the Gram-positive bacterium Lactococcus lactis as a model. By applying a standard EV isolation procedure, we observed the presence of EVs in the culture supernatant of a lysogenic L. lactis strain FM-YL11, for which the prophage-inducing condition led to an over 10-fold increase in EV production in comparison with the non-inducing condition. In contrast, the prophage-encoded holin-lysin knockout mutant YL11ΔHLH and the prophage-cured mutant FM-YL12 produced constantly low levels of EVs. Under the prophage-inducing condition, FM-YL11 did not show massive cell lysis. Defective phage particles were found to be released in and associated with holin-lysin-induced EVs from FM-YL11, as demonstrated by transmission electron microscopic images, flow cytometry and proteomics analysis. Findings from this study further generalized the EV-producing phenotype to Gram-positive L. lactis, and provide additional insights into the EV production mechanism involving prophage-encoded holin-lysin system. The knowledge on bacterial EV production can be applied to all Gram-positive bacteria and other lactic acid bacteria with important roles in fermentations and probiotic formulations, to enable desired release and delivery of cellular components with nutritional values or probiotic effects.


Assuntos
Bacteriófagos , Vesículas Extracelulares , Lactococcus lactis , Bacteriófagos/genética , Lactococcus lactis/genética , Lisogenia , Prófagos/genética
5.
Food Res Int ; 150(Pt A): 110783, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34865798

RESUMO

The behaviour of pathogens at the single-cell level can be highly variable and can thus affect the detection efficacy of enrichment-based detection methods. The outgrowth of single cells of three Listeria monocytogenes strains was monitored after fluorescence-activated single-cell sorting in non-selective brain heart infusion (BHI) broth and selective half Fraser enrichment broth (HFB) to quantify outgrowth heterogeneity and its effect on the detection probability. Single-cell heterogeneity was higher in HFB compared to non-selective BHI and heterogeneity increased further when cells were heat-stressed. The increase in heterogeneity was also strain-dependent because the fast-recovering strain Scott A showed less outgrowth heterogeneity than the slower-recovering strains EGDe and H7962. Modelling of the outgrowth kinetics during the primary enrichment demonstrated that starting at low cell concentrations could fail detection of L. monocytogenes at least partly due to cell heterogeneity. This highlights that it is important to take single-cell heterogeneity into account when optimizing enrichment formulations and procedures when L. monocytogenes contamination levels are low.


Assuntos
Listeria monocytogenes , Contagem de Colônia Microbiana , Meios de Cultura , Microbiologia de Alimentos , Cinética
6.
Int J Food Microbiol ; 351: 109269, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34102570

RESUMO

Microbial population heterogeneity contributes to differences in stress response between individual cells in a population, and can lead to the selection of genetically stable variants with increased stress resistance. We previously provided evidence that the multiple-stress resistant Listeria monocytogenes LO28 variant 15, carries a point mutation in the rpsU gene, resulting in an arginine-proline substitution in ribosomal protein RpsU (RpsU17Arg-Pro). Here, we investigated the trade-off between general stress sigma factor SigB-mediated stress resistance and fitness in variant 15 using experimental evolution. By selecting for higher fitness in two parallel evolving cultures, we identified two evolved variants: 15EV1 and 15EV2. Whole genome sequencing and SNP analysis showed that both parallel lines mutated in the same codon in rpsU as the original mutation resulting in RpsU17Pro-His (15EV1) and RpsU17Pro-Thr (15EV2). Using a combined phenotyping and proteomics approach, we assessed the resistance of the evolved variants to both heat and acid stress, and found that in both lines reversion to WT-like fitness also resulted in WT-like stress sensitivity. Proteome analysis of L. monocytogenes LO28 WT, variant 15, 15EV1, and 15EV2 revealed high level expression of SigB regulon members only in variant 15, whereas protein profiles of both evolved variants were highly similar to that of the LO28 WT. Experiments with constructed RpsU17Arg-Pro mutants in L. monocytogenes LO28 and EGDe, and RpsU17Arg-His and RpsU17Arg-Thr in LO28, confirmed that single amino acid substitutions in RpsU enable switching between multiple-stress resistant and high fitness states in L. monocytogenes.


Assuntos
Adaptação Fisiológica/genética , Proteínas de Bactérias/genética , Listeria monocytogenes/fisiologia , Proteínas Ribossômicas/genética , Ácidos/metabolismo , Substituição de Aminoácidos , Proteínas de Bactérias/metabolismo , Evolução Molecular Direcionada , Genoma Bacteriano/genética , Temperatura Alta , Listeria monocytogenes/genética , Mutação , Proteoma/metabolismo , Proteínas Ribossômicas/metabolismo , Fator sigma/genética , Fator sigma/metabolismo
7.
Int J Food Microbiol ; 283: 14-21, 2018 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-29935377

RESUMO

Microbial population heterogeneity allows for a differential microbial response to environmental stresses and can lead to the selection of stress resistant variants. In this study, we have used two different stress resistant variants of Listeria monocytogenes LO28 with mutations in the rpsU gene encoding ribosomal protein S21, to elucidate features that can contribute to fitness, stress-tolerance and host interaction using a comparative gene profiling and phenotyping approach. Transcriptome analysis showed that 116 genes were upregulated and 114 genes were downregulated in both rpsU variants. Upregulated genes included a major contribution of SigB-controlled genes such as intracellular acid resistance-associated glutamate decarboxylase (GAD) (gad3), genes involved in compatible solute uptake (opuC), glycerol metabolism (glpF, glpK, glpD), and virulence (inlA, inlB). Downregulated genes in the two variants involved mainly genes involved in flagella synthesis and motility. Phenotyping results of the two rpsU variants matched the gene profiling data including enhanced freezing resistance conceivably linked to compatible solute accumulation, higher glycerol utilisation rates, and better adhesion to Caco 2 cells presumably linked to higher expression of internalins. Also, bright field and electron microscopy analysis confirmed reduced flagellation of the variants. The activation of SigB-mediated stress defence offers an explanation for the multiple-stress resistant phenotype in rpsU variants.


Assuntos
Regulação Bacteriana da Expressão Gênica , Listeria monocytogenes/genética , Listeria monocytogenes/patogenicidade , Listeriose/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Células CACO-2 , Perfilação da Expressão Gênica , Humanos , Listeria monocytogenes/isolamento & purificação , Listeria monocytogenes/fisiologia , Fenótipo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Virulência
8.
Front Microbiol ; 7: 1096, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27486443

RESUMO

The ability of spores to recover and grow out after food processing is affected by cellular factors and by the outgrowth conditions. In the current communication we studied the recovery and outgrowth of individually sorted spores in BHI and rice broth media and on agar plates using flow cytometry. We show that recovery of wet heat treated Bacillus cereus ATCC 14579 spores is affected by matrix composition with highest recovery in BHI broth or on rice agar plates, compared to BHI agar plates and rice broth. Data show that not only media composition but also its liquid or solid state affect the recovery of heat treated spores. To determine the impact of factors with putative roles in recovery of heat treated spores, specific genes previously shown to be highly expressed in outgrowing heat-treated spores were selected for mutant construction. Spores of nine B. cereus ATCC 14579 deletion mutants were obtained and their recovery from wet heat treatment was evaluated using BHI and rice broth and agar plates. Deletion mutant spores showed different capacity to recover from heat treatment compared to wild type with the most pronounced effect for a mutant lacking BC5242, a gene encoding a membrane protein with C2C2 zinc finger which resulted in over 95% reduction in recovery compared to the wild type in BHI broth. Notably, similar relative performance of wild type and mutants was observed using the other recovery conditions. We obtained insights on the impact of matrix composition and state on recovery of individually sorted heat treated spores and identified cellular factors with putative roles in this process. These results may provide leads for future developments in design of more efficient combined preservation treatments.

9.
PLoS One ; 11(2): e0148670, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26849219

RESUMO

Spores are widely present in the environment and are common contaminants in the food chain, creating a challenge for food industry. Nowadays, heat treatments conventionally applied in food processing may become milder to comply with consumer desire for products with higher sensory and nutritional values. Consequently subpopulations of spores may emerge that are sublethally damaged rather than inactivated. Such spores may germinate, repair damage, and eventually grow out leading to uncontrolled spoilage and safety issues. To gain insight into both the behaviour of damaged Bacillus cereus spores, and the process of damage repair, we assessed the germination and outgrowth performance using OD595 measurements and microscopy combined with genome-wide transcription analysis of untreated and heat-treated spores. The first two methods showed delayed germination and outgrowth of heat-damaged B. cereus ATCC14579 spores. A subset of genes uniquely expressed in heat-treated spores was identified with putative roles in the outgrowth of damaged spores, including cdnL (BC4714) encoding the putative transcriptional regulator CdnL. Next, a B. cereus ATCC14579 cdnL (BC4714) deletion mutant was constructed and assessment of outgrowth from heat-treated spores under food relevant conditions showed increased damage compared to wild type spores. The approach used in this study allows for identification of candidate genes involved in spore damage repair. Further identification of cellular parameters and characterisation of the molecular processes contributing to spore damage repair may provide leads for better control of spore outgrowth in foods.


Assuntos
Bacillus cereus/fisiologia , Proteínas de Bactérias/biossíntese , Temperatura Alta , Fatores de Transcrição/biossíntese , Proteínas de Bactérias/genética , Deleção de Genes , Esporos Bacterianos/genética , Esporos Bacterianos/crescimento & desenvolvimento , Fatores de Transcrição/genética
10.
Int J Food Microbiol ; 213: 110-7, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25987542

RESUMO

Bacillus cereus sensu lato is composed of a set of ubiquitous strains including human pathogens that can survive a range of food processing conditions, grow in refrigerated food, and sometimes cause food poisoning. We previously identified the two-component system CasK/R that plays a key role in cold adaptation. To better understand the CasK/R-controlled mechanisms that support low-temperature adaptation, we performed a transcriptomic analysis on the ATCC 14579 strain and its isogenic ∆casK/R mutant grown at 12°C. Several genes involved in fatty acid (FA) metabolism were downregulated in the mutant, including desA and desB encoding FA acyl-lipid desaturases that catalyze the formation of a double-bond on the FA chain in positions ∆5 and ∆10, respectively. A lower proportion of FAs presumably unsaturated by DesA was observed in the ΔcasK/R strain compared to the parental strain while no difference was found for FAs presumably unsaturated by DesB. Addition of phospholipids from egg yolk lecithin rich in unsaturated FAs, to growth medium, abolished the cold-growth impairment of ΔcasK/R suggesting that exogenous unsaturated FAs can support membrane-level modifications and thus compensate for the decreased production of these FAs in the B. cereus ∆casK/R mutant during growth at low temperature. Our findings indicate that CasK/R is involved in the regulation of FA metabolism, and is necessary for cold adaptation of B. cereus unless an exogenous source of unsaturated FAs is available.


Assuntos
Adaptação Fisiológica/genética , Bacillus cereus/enzimologia , Ácidos Graxos/metabolismo , Microbiologia de Alimentos , Doenças Transmitidas por Alimentos/microbiologia , Guanilato Quinases/fisiologia , Receptores de Detecção de Cálcio/fisiologia , Bacillus cereus/genética , Temperatura Baixa , Meios de Cultura/química , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos/análise , Perfilação da Expressão Gênica , Guanilato Quinases/genética , Humanos , Fosfolipídeos/metabolismo , Receptores de Detecção de Cálcio/genética
11.
PLoS One ; 7(12): e51047, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23239999

RESUMO

We characterized a new quorum-sensing regulator, PlcRa, which is present in various members of the B. cereus group and identified a signaling heptapeptide for PlcRa activity: PapRa(7). We demonstrated that PlcRa is a 3D structural paralog of PlcR using sequence analysis and homology modeling. A comparison of the transcriptomes at the onset of stationary phase of a ΔplcRa mutant and the wild-type B. cereus ATCC 14579 strain showed that 68 genes were upregulated and 49 genes were downregulated in the ΔplcRa mutant strain (>3-fold change). Genes involved in the cysteine metabolism (putative CymR regulon) were downregulated in the ΔplcRa mutant strain. We focused on the gene with the largest difference in expression level between the two conditions, which encoded -AbrB2- a new regulator of the AbrB family. We demonstrated that purified PlcRa bound specifically to the abrB2 promoter in the presence of synthetic PapRa(7), in an electrophoretic mobility shift assay. We further showed that the AbrB2 regulator controlled the expression of the yrrT operon involved in methionine to cysteine conversion. We found that the ΔplcRa mutant strain was more sensitive to hydrogen peroxide- and disulfide-induced stresses than the wild type. When cystine was added to the culture of the ΔplcRa mutant, challenged with hydrogen peroxide, growth inhibition was abolished. In conclusion, we identified a new RNPP transcriptional regulator in B. cereus that activated the oxidative stress response and cysteine metabolism in transition state cells.


Assuntos
Bacillus cereus , Proteínas de Bactérias , Cisteína/metabolismo , Percepção de Quorum/genética , Transativadores , Sequência de Aminoácidos , Bacillus cereus/genética , Bacillus cereus/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Dados de Sequência Molecular , Mutação , Estresse Oxidativo , Regiões Promotoras Genéticas , Transativadores/genética , Transativadores/metabolismo , Transcrição Gênica
12.
Appl Environ Microbiol ; 77(8): 2755-62, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21357430

RESUMO

Cereulide and valinomycin are highly similar cyclic dodecadepsipeptides with potassium ionophoric properties. Cereulide, produced by members of the Bacillus cereus group, is known mostly as emetic toxin, and no ecological function has been assigned. A comparative analysis of the antimicrobial activity of valinomycin produced by Streptomyces spp. and cereulide was performed at a pH range of pH 5.5 to pH 9.5, under anaerobic and aerobic conditions. Both compounds display pH-dependent activity against selected Gram-positive bacteria, including Staphylococcus aureus, Listeria innocua, Listeria monocytogenes, Bacillus subtilis, and Bacillus cereus ATCC 10987. Notably, B. cereus strain ATCC 14579 and the emetic B. cereus strains F4810/72 and A529 showed reduced sensitivity to both compounds, with the latter two strains displaying full resistance to cereulide. Both compounds showed no activity against the selected Gram-negative bacteria. Antimicrobial activity against Gram-positive bacteria was highest at alkaline pH values, where the membrane potential (ΔΨ) is the main component of the proton motive force (PMF). Furthermore, inhibition of growth was observed in both aerobic and anaerobic conditions. Determination of the ΔΨ, using the membrane potential probe DiOC(2)(3) (in the presence of 50 mM KCl) in combination with flow cytometry, demonstrated for the first time the ability of cereulide to dissipate the ΔΨ in sensitive Gram-positive bacteria. The putative role of cereulide production in the ecology of emetic B. cereus is discussed.


Assuntos
Antibacterianos/farmacologia , Bacillus cereus/metabolismo , Toxinas Bacterianas/farmacologia , Depsipeptídeos/farmacologia , Streptomyces/metabolismo , Valinomicina/farmacologia , Aerobiose , Citometria de Fluxo , Microbiologia de Alimentos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Potenciais da Membrana , Testes de Sensibilidade Microbiana
13.
Environ Microbiol ; 12(3): 730-45, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19958380

RESUMO

A common bacterial strategy for monitoring environmental challenges is to use two-component systems, which consist of a sensor histidine kinase (HK) and a response regulator (RR). In the food-borne pathogen Bacillus cereus, the alternative sigma factor sigma(B) is activated by the RR RsbY. Here we present strong indications that the PP2C-type phosphatase RsbY receives its input from the multi-sensor hybrid kinase BC1008 (renamed RsbK). Genome analyses revealed that, across bacilli, rsbY and rsbK are located in a conserved gene cluster. A B. cereus rsbK deletion strain was shown to be incapable of inducing sigma(B) upon stress conditions and was impaired in its heat adaptive response. Comparison of the wild-type and rsbK mutant transcriptomes upon heat shock revealed that RsbK was primarily involved in the activation of the sigma(B)-mediated stress response. Truncation of the RsbK RR receiver domain demonstrated the importance of this domain for sigma(B) induction upon stress. The domain architecture of RsbK suggests that in the B. cereus group and in other bacilli, environmental and intracellular stress signalling routes are combined into one single protein. This strategy is markedly different from the sigma(B) activation pathway in other low-GC Gram-positives.


Assuntos
Bacillus cereus , Proteínas de Bactérias/metabolismo , Fosfotransferases/metabolismo , Fator sigma/metabolismo , Estresse Fisiológico , Bacillus cereus/enzimologia , Bacillus cereus/genética , Bacillus cereus/fisiologia , Proteínas de Bactérias/genética , Sequência de Bases , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Teste de Complementação Genética , Análise em Microsséries , Dados de Sequência Molecular , Família Multigênica , Fosfotransferases/genética , Fator sigma/genética
14.
Int J Food Microbiol ; 137(1): 13-21, 2010 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-19853945

RESUMO

Comparative phenotype and transcriptome analyses were performed with Bacillus cereus ATCC 14579 exposed to pH 5.5 set with different acidulants including hydrochloric acid (HCl), lactic acid (HL) and acetic acid (HAc). Phenotypes observed included a decreased growth rate (with HCl), bacteriostatic and bactericidal conditions, with 2mM undissociated HAc or HL, and 15mM undissociated HAc, respectively. In the latter condition a concomitant decrease in intracellular ATP levels was observed. The transcriptome analyses revealed general and specific responses to the acidulants used. The general acid stress response includes modulation of pyruvate metabolism with activation of the butanediol fermentation pathway, and an oxidative stress response that was, however, more extensive in the bacteriostatic and bactericidal conditions. HL-specific and HAc-specific responses include modulation of metabolic pathways for amino acid metabolism. Activation of lactate, formate, and ethanol fermentation pathways, alternative electron-transport chain components and fatty acid biosynthesis genes was noted in the presence of 15mM undissociated HAc. In conclusion, our study has provided insights in phenotype-associated, and general and acidulant-specific responses in B. cereus.


Assuntos
Bacillus cereus/genética , Bacillus cereus/fisiologia , Microbiologia de Alimentos , Ácidos , Trifosfato de Adenosina/metabolismo , Bacillus cereus/crescimento & desenvolvimento , Bacillus cereus/patogenicidade , Fermentação , Expressão Gênica , Perfilação da Expressão Gênica , Genes Bacterianos , Concentração de Íons de Hidrogênio , Fenótipo , Estresse Fisiológico
15.
J Food Prot ; 69(11): 2681-6, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17133811

RESUMO

Growing microorganisms on dry surfaces, which results in exposure to low water activity (a(w)), may change their normal morphology and physiological activity. In this study, the morphological changes and cell viability of Salmonella enterica serovar Enteritidis challenged to low a(w) were analyzed. The results indicated that exposure to reduced a(w) induced filamentation of the cells. The amount of filamentous cells at a(w) 0.94 was up to 90% of the total number of cells. Surviving filamentous cells maintained their membrane integrity after exposure to low a(w) for 21 days. Furthermore, cells prechallenged to low a(w), obtained with an ionic humectant, demonstrated higher resistance to sodium hypochlorite than control cells. These resistant cells are able to survive disinfection more efficiently and can therefore cause contamination of foods coming in contact with surfaces. This points to the need for increased attention to cleaning of surfaces in household environments and disinfection procedures in processing plants.


Assuntos
Desinfetantes/farmacologia , Desinfecção/métodos , Salmonella enteritidis/fisiologia , Hipoclorito de Sódio/farmacologia , Água/metabolismo , Contagem de Colônia Microbiana , Qualidade de Produtos para o Consumidor , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Humanos , Viabilidade Microbiana , Salmonella enteritidis/efeitos dos fármacos , Salmonella enteritidis/crescimento & desenvolvimento , Salmonella enteritidis/metabolismo , Fatores de Tempo
16.
J Bacteriol ; 187(16): 5846-51, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16077134

RESUMO

The alternative sigma factor sigma(B) is an important regulator of the stress response of Bacillus cereus. Here, the role of the regulatory proteins RsbV, RsbW, and RsbY in regulating sigma(B) activity in B. cereus is analyzed. Functional characterization of RsbV and RsbW showed that they act as an anti-sigma factor antagonist and an anti-sigma factor, respectively. RsbW can also act as a kinase on RsbV. These data are in line with earlier functional characterizations of RsbV and RsbW homologs in B. subtilis. The rsbY gene is unique to B. cereus and its closest relatives and is predicted to encode a protein with an N-terminal CheY domain and a C-terminal PP2C domain. In an rsbY deletion mutant, the sigma(B) response upon stress exposure was almost completely abolished, but the response could be restored by complementation with full-length rsbY. Expression analysis showed that rsbY is transcribed from both a sigma(A)-dependent promoter and a sigma(B)-dependent promoter. The central role of RsbY in regulating the activity of sigma(B) indicates that in B. cereus, the sigma(B) activation pathway is markedly different from that in other gram-positive bacteria.


Assuntos
Bacillus cereus/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Fator sigma/metabolismo , Bacillus cereus/genética , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/fisiologia , Regiões Promotoras Genéticas/fisiologia
17.
J Bacteriol ; 186(2): 316-25, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14702299

RESUMO

A gene cluster encoding the alternative sigma factor sigma(B), three predicted regulators of sigma(B) (RsbV, RsbW, and RsbY), and one protein whose function is not known (Orf4) was identified in the genome sequence of the food pathogen Bacillus cereus ATCC 14579. Western blotting with polyclonal antibodies raised against sigma(B) revealed that there was 20.1-fold activation of sigma(B) after a heat shock from 30 to 42 degrees C. Osmotic upshock and ethanol exposure also upregulated sigma(B), albeit less than a heat shock. When the intracellular ATP concentration was decreased by exposure to carbonyl cyanide m-chlorophenylhydrazone (CCCP), only limited increases in sigma(B) levels were observed, revealing that stress due to ATP depletion is not an important factor in sigma(B) activation in B. cereus. Analysis of transcription of the sigB operon by Northern blotting and primer extension revealed the presence of a sigma(B)-dependent promoter upstream of the first open reading frame (rsbV) of the sigB operon, indicating that transcription of sigB is autoregulated. A second sigma(B)-dependent promoter was identified upstream of the last open reading frame (orf4) of the sigB operon. Production of virulence factors and the nonhemolytic enterotoxin Nhe in a sigB null mutant was the same as in the parent strain. However, sigma(B) was found to play a role in the protective heat shock response of B. cereus. The sigB null mutant was less protected against the lethal temperature of 50 degrees C by a preadaptation to 42 degrees C than the parent strain was, resulting in a more-than-100-fold-reduced survival of the mutant after 40 min at 50 degrees C.


Assuntos
Bacillus cereus/fisiologia , Proteínas de Bactérias/fisiologia , Temperatura Alta , Fator sigma/fisiologia , Adaptação Fisiológica , Anticorpos Antibacterianos/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Família Multigênica , Óperon , Fator sigma/genética , Fator sigma/imunologia , Transcrição Gênica , Fatores de Virulência/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...