Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35808405

RESUMO

The need for reliable communications in industrial systems becomes more evident as industries strive to increase reliance on automation. This trend has sustained the adoption of WirelessHART communications as a key enabling technology and its operational integrity must be ensured. This paper focuses on demonstrating pre-deployment counterfeit detection using active 2D Distinct Native Attribute (2D-DNA) fingerprinting. Counterfeit detection is demonstrated using experimentally collected signals from eight commercial WirelessHART adapters. Adapter fingerprints are used to train 56 Multiple Discriminant Analysis (MDA) models with each representing five authentic network devices. The three non-modeled devices are introduced as counterfeits and a total of 840 individual authentic (modeled) versus counterfeit (non-modeled) ID verification assessments performed. Counterfeit detection is performed on a fingerprint-by-fingerprint basis with best case per-device Counterfeit Detection Rate (%CDR) estimates including 87.6% < %CDR < 99.9% and yielding an average cross-device %CDR ≈ 92.5%. This full-dimensional feature set performance was echoed by dimensionally reduced feature set performance that included per-device 87.0% < %CDR < 99.7% and average cross-device %CDR ≈ 91.4% using only 18-of-291 features­the demonstrated %CDR > 90% with an approximate 92% reduction in the number of fingerprint features is sufficiently promising for small-scale network applications and warrants further consideration.


Assuntos
Medicamentos Falsificados , Medicamentos Falsificados/análise , Impressões Digitais de DNA , Análise Discriminante , Indústrias
2.
Sensors (Basel) ; 22(6)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35336280

RESUMO

Radio Frequency Fingerprinting (RFF) is often proposed as an authentication mechanism for wireless device security, but application of existing techniques in multi-channel scenarios is limited because prior models were created and evaluated using bursts from a single frequency channel without considering the effects of multi-channel operation. Our research evaluated the multi-channel performance of four single-channel models with increasing complexity, to include a simple discriminant analysis model and three neural networks. Performance characterization using the multi-class Matthews Correlation Coefficient (MCC) revealed that using frequency channels other than those used to train the models can lead to a deterioration in performance from MCC > 0.9 (excellent) down to MCC < 0.05 (random guess), indicating that single-channel models may not maintain performance across all channels used by the transmitter in realistic operation. We proposed a training data selection technique to create multi-channel models which outperform single-channel models, improving the cross-channel average MCC from 0.657 to 0.957 and achieving frequency channel-agnostic performance. When evaluated in the presence of noise, multi-channel discriminant analysis models showed reduced performance, but multi-channel neural networks maintained or surpassed single-channel neural network model performance, indicating additional robustness of multi-channel neural networks in the presence of noise.


Assuntos
Redes de Comunicação de Computadores , Ondas de Rádio , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...