Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 23(1): 280, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37231379

RESUMO

BACKGROUND: Hops (Humulus lupulus L.) are a dioecious climbing perennial, with the dried mature "cones" (strobili) of the pistillate/female inflorescences being widely used as both a bittering agent and to enhance the flavour of beer. The glandular trichomes of the bract and bracteole flowering structures of the cones produce an abundance of secondary metabolites, such as terpenoids, bitter acids and prenylated phenolics depending on plant genetics, developmental stage and environment. More knowledge is required on the functional and allelic diversity of terpene synthase (TPS) genes responsible for the biosynthesis of volatile terpenes to assist in flavour-directed hop breeding. RESULTS: Major volatile terpene compounds were identified using gas chromatography-mass spectrometry (GC-MS) in the ripe cones of twenty-one hop cultivars grown in New Zealand. All cultivars produced the monoterpene ß-myrcene and the sesquiterpenes α-humulene and ß-caryophyllene, but the quantities varied broadly. Other terpenes were found in large quantities in only a smaller subset of cultivars, e.g. ß-farnesene (in seven cultivars) and α-pinene (in four). In four contrasting cultivars (Wakatu™, Wai-iti™, Nelson Sauvin™, and 'Nugget'), terpene production during cone development was investigated in detail, with concentrations of some of the major terpenes increasing up to 1000-fold during development and reaching maximal levels from 50-60 days after flowering. Utilising the published H. lupulus genome, 87 putative full-length and partial terpene synthase genes were identified. Alleles corresponding to seven TPS genes were amplified from ripe cone cDNA from multiple cultivars and subsequently functionally characterised by transient expression in planta. Alleles of the previously characterised HlSTS1 produced humulene/caryophyllene as the major terpenes. HlRLS alleles produced (R)-(-)-linalool, whilst alleles of two sesquiterpene synthase genes, HlAFS1 and HlAFS2 produced α-farnesene. Alleles of HlMTS1, HlMTS2 and HlTPS1 were inactive in all the hop cultivars studied. CONCLUSIONS: Alleles of four TPS genes were identified and shown to produce key aroma volatiles in ripe hop cones. Multiple expressed but inactive TPS alleles were also identified, suggesting that extensive loss-of-function has occurred during domestication and breeding of hops. Our results can be used to develop hop cultivars with novel/improved terpene profiles using marker-assisted breeding strategies to select for, or against, specific TPS alleles.


Assuntos
Humulus , Humulus/genética , Humulus/metabolismo , Alelos , Melhoramento Vegetal , Terpenos/metabolismo
2.
Plant Physiol ; 151(4): 1867-77, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19846541

RESUMO

One of the key factors that defines plant form is the regulation of when and where branches develop. The diversity of form observed in nature results, in part, from variation in the regulation of branching between species. Two CAROTENOID CLEAVAGE DIOXYGENASE (CCD) genes, CCD7 and CCD8, are required for the production of a branch-suppressing plant hormone. Here, we report that the decreased apical dominance3 (dad3) mutant of petunia (Petunia hybrida) results from the mutation of the PhCCD7 gene and has a less severe branching phenotype than mutation of PhCCD8 (dad1). An analysis of the expression of this gene in wild-type, mutant, and grafted petunia suggests that in petunia, CCD7 and CCD8 are coordinately regulated. In contrast to observations in Arabidopsis (Arabidopsis thaliana), ccd7ccd8 double mutants in petunia show an additive phenotype. An analysis using dad3 or dad1 mutant scions grafted to wild-type rootstocks showed that when these plants produce adventitious mutant roots, branching is increased above that seen in plants where the mutant roots are removed. The results presented here indicate that mutation of either CCD7 or CCD8 in petunia results in both the loss of an inhibitor of branching and an increase in a promoter of branching.


Assuntos
Morfogênese , Petunia/enzimologia , Petunia/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Transdução de Sinais , Biomassa , Segregação de Cromossomos/genética , Retroalimentação Fisiológica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Teste de Complementação Genética , Dados de Sequência Molecular , Mutação/genética , Tamanho do Órgão , Especificidade de Órgãos , Petunia/genética , Fenótipo , Proteínas de Plantas/genética , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/enzimologia , Brotos de Planta/crescimento & desenvolvimento , Caules de Planta/enzimologia , Caules de Planta/genética , Interferência de RNA , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa
3.
Plant Cell ; 17(3): 746-59, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15705953

RESUMO

Carotenoids and carotenoid cleavage products play an important and integral role in plant development. The Decreased apical dominance1 (Dad1)/PhCCD8 gene of petunia (Petunia hybrida) encodes a hypothetical carotenoid cleavage dioxygenase (CCD) and ortholog of the MORE AXILLARY GROWTH4 (MAX4)/AtCCD8 gene. The dad1-1 mutant allele was inactivated by insertion of an unusual transposon (Dad-one transposon), and the dad1-3 allele is a revertant allele of dad1-1. Consistent with its role in producing a graft-transmissible compound that can alter branching, the Dad1/PhCCD8 gene is expressed in root and shoot tissue. This expression is upregulated in the stems of the dad1-1, dad2, and dad3 increased branching mutants, indicating feedback regulation of the gene in this tissue. However, this feedback regulation does not affect the root expression of Dad1/PhCCD8. Overexpression of Dad1/PhCCD8 in the dad1-1 mutant complemented the mutant phenotype, and RNA interference in the wild type resulted in an increased branching phenotype. Other differences in phenotype associated with the loss of Dad1/PhCCD8 function included altered timing of axillary meristem development, delayed leaf senescence, smaller flowers, reduced internode length, and reduced root growth. These data indicate that the substrate(s) and/or product(s) of the Dad1/PhCCD8 enzyme are mobile signal molecules with diverse roles in plant development.


Assuntos
Genes de Plantas , Petunia/crescimento & desenvolvimento , Petunia/genética , Alelos , Sequência de Aminoácidos , Sequência de Bases , Carotenoides/metabolismo , Elementos de DNA Transponíveis/genética , DNA de Plantas/genética , Dioxigenases/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Mutação , Petunia/enzimologia , Fenótipo , Filogenia , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...