Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Transl Immunology ; 10(1): e1234, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33489124

RESUMO

OBJECTIVES: Multiple sclerosis (MS) is a neurodegenerative disease characterised by inflammation and damage to the myelin sheath, resulting in physical and cognitive disability. There is currently no cure for MS, and finding effective treatments to prevent disease progression has been challenging. Recent evidence suggests that activating kappa opioid receptors (KOR) has a beneficial effect on the progression of MS. Although many KOR agonists like U50,488 are not suitable for clinical use because of a poor side-effect profile, nalfurafine is a potent, clinically used KOR agonist with a favorable side-effect profile. METHODS: Using the experimental autoimmune encephalomyelitis (EAE) model, the effect of therapeutically administered nalfurafine or U50,488 on remyelination, CNS infiltration and peripheral immune responses were compared. Additionally, the cuprizone model was used to compare the effects on non-immune demyelination. RESULTS: Nalfurafine enabled recovery and remyelination during EAE. Additionally, it was more effective than U50,488 and promoted disease reduction when administered after chronic demyelination. Blocking KOR with the antagonist, nor-BNI, impaired full recovery by nalfurafine, indicating that nalfurafine mediates recovery from EAE in a KOR-dependent fashion. Furthermore, nalfurafine treatment reduced CNS infiltration (especially CD4+ and CD8+ T cells) and promoted a more immunoregulatory environment by decreasing Th17 responses. Finally, nalfurafine was able to promote remyelination in the cuprizone demyelination model, supporting the direct effect on remyelination in the absence of peripheral immune cell invasion. CONCLUSIONS: Overall, our findings support the potential of nalfurafine to promote recovery and remyelination and highlight its promise for clinical use in MS.

2.
Front Neurol ; 12: 782190, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34987466

RESUMO

Multiple sclerosis is a neurodegenerative disease associated with demyelination and neuroinflammation in the central nervous system. There is an urgent need to develop remyelinating therapies to better treat multiple sclerosis and other demyelinating diseases. The kappa opioid receptor (KOR) has been identified as a potential target for the development of remyelinating therapies; however, prototypical KOR agonists, such as U50,488 have side effects, which limit clinical use. In the current study, we investigated a Salvinorin A analog, ethoxymethyl ether Salvinorin B (EOM SalB) in two preclinical models of demyelination in C57BL/6J mice. We showed that in cellular assays EOM SalB was G-protein biased, an effect often correlated with fewer KOR-mediated side effects. In the experimental autoimmune encephalomyelitis model, we found that EOM SalB (0.1-0.3 mg/kg) effectively decreased disease severity in a KOR-dependent manner and led to a greater number of animals in recovery compared to U50,488 treatment. Furthermore, EOM SalB treatment decreased immune cell infiltration and increased myelin levels in the central nervous system. In the cuprizone-induced demyelination model, we showed that EOM SalB (0.3 mg/kg) administration led to an increase in the number of mature oligodendrocytes, the number of myelinated axons and the myelin thickness in the corpus callosum. Overall, EOM SalB was effective in two preclinical models of multiple sclerosis and demyelination, adding further evidence to show KOR agonists are a promising target for remyelinating therapies.

3.
PLoS One ; 14(5): e0216113, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31071102

RESUMO

The atypical antipsychotic agent, clozapine, is used to treat a variety of neurological disorders including schizophrenia and Parkinson's disease and readily crosses the blood brain barrier to interact with a wide range of neuroreceptors including those for dopamine and serotonin. Recent work has shown that clozapine can reduce neuroinflammation in experimental autoimmune encephalomyelitis, a neuroinflammatory model of multiple sclerosis (MS) and mediates its effects in the central nervous system. To further characterise the protection provided by clozapine, the cuprizone model of demyelination was used to assess the effect of clozapine treatment on the cellular events surrounding demyelination and remyelination. Using this model of non-immune demyelination, we found that clozapine administration was unable to prevent demyelination, but when administered post demyelination, was able to enhance the rate of functional recovery. The more rapid improvement of clozapine-treated mice correlated with a decreased level of astrocyte and microglial activation but only modestly enhanced remyelination. Together, these studies highlight the potential of clozapine to support enhanced functional recovery after demyelination, such as that occurring during MS.


Assuntos
Clozapina/farmacologia , Cuprizona/farmacologia , Doenças Desmielinizantes/tratamento farmacológico , Bainha de Mielina/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Sistema Nervoso Central/efeitos dos fármacos , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/tratamento farmacológico , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/tratamento farmacológico
4.
Invest New Drugs ; 35(6): 706-717, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28733703

RESUMO

Chemotherapeutic agents can induce accelerated senescence in tumor cells, an irreversible state of cell cycle arrest. Paclitaxel, a microtubule-stabilizing agent used to treat solid tumors of the breast, ovary, and lung and discodermolide, another stabilizing agent from a marine sponge, induce senescence in cultured cancer cells. The aim of this study was to determine if the microtubule-stabilizing agent peloruside A, a polyketide natural product from a marine sponge, can induce accelerated senescence in a breast cancer cell line MCF7. Doxorubicin, a DNA-damaging agent, paclitaxel, and discodermolide were used as positive controls. Senescence-associated-ß-galactosidase activity was increased by peloruside A, similar to paclitaxel, discodermolde, and doxorubicin, with a potency heirarchy of doxorubicin > paclitaxel > discodermolide > peloruside, based on IC25 concentrations that inhibit proliferation. Clonogenic survival was significantly decreased by peloruside A, similar to doxorubicin and the two other microtubule-stabilizing agents. The tumor suppressor protein p53 increased after treatment, whereas pRb decreased in response to all four compounds. It was concluded that in addition to apoptosis, peloruside A causes accelerated senescence in a subpopulation of MCF7 cells that contributes to its potential anticancer activity in a breast cancer cell line.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Proliferação de Células/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Lactonas/farmacologia , Microtúbulos/química , Humanos , Células MCF-7 , Microtúbulos/efeitos dos fármacos
5.
Mult Scler J Exp Transl Clin ; 3(1): 2055217317698724, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28607752

RESUMO

BACKGROUND: Atypical antipsychotic agents (AAP) alleviate the symptoms of severe mental health disorders, such as schizophrenia, by antagonizing dopamine and serotonin receptors. Recently, AAP have also been shown to exhibit immunomodulatory properties in the central nervous system (CNS). OBJECTIVE: Building on research which demonstrated the ability of the AAP risperidone and clozapine to modify the disease course of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), we aimed to more fully investigate the potential of clozapine as a possible treatment for MS. RESULTS: We report that orally administered clozapine significantly reduced the disease severity of EAE in a dose-dependent manner and was effective when administered prophylactically and therapeutically. In comparison to risperidone, quetiapine, and olanzapine, clozapine was the best at reducing disease severity. While clozapine-treated mice had only modest changes to peripheral leukocytes and cytokine responses, these animals had significantly fewer CNS-infiltrating CD4 T cells and myeloid cells. Furthermore, the CNS myeloid cells displayed a less activated phenotype in mice treated with clozapine. Finally, we found that co-administration of clozapine with glatiramer acetate enhanced disease protection compared to either treatment alone. CONCLUSION: These studies indicate that clozapine is an effective immunomodulatory agent with the potential to treat immune-mediated diseases such as MS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...