Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Psychiatry ; 12(1): 502, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36473832

RESUMO

Post-traumatic stress disorder (PTSD) is a psychiatric disorder vulnerable individuals can develop following a traumatic event, whereas others are resilient. Enhanced insight into the mechanistic underpinnings contributing to these inter-individual differences in trauma susceptibility is key to improved treatment and prevention. Aberrant function of the hippocampal dentate gyrus (DG) may contribute to its psychopathology, with the dorsal DG potentially encoding trauma memory generalization and the ventral DG anxiety. Using a mouse model, we hypothesized that susceptibility to develop PTSD-like symptoms following trauma will be underpinned by aberrant DG structure and function. Mice were exposed to a traumatic event (unpredictable, inescapable foot shocks) and tested for PTSD-like symptomatology following recovery. In four independent experiments, DG neuronal morphology, synaptic protein gene and protein expression, and neuronal activity during trauma encoding and recall were assessed. Behaviorally, trauma-susceptible animals displayed increased anxiety-like behavior already prior to trauma, increased novelty-induced freezing, but no clear differences in remote trauma memory recall. Comparison of the ventral DG of trauma susceptible vs resilient mice revealed lower spine density, reduced expression of the postsynaptic protein homer1b/c gene and protein, a larger population of neurons active during trauma encoding, and a greater presence of somatostatin neurons. In contrast, the dorsal DG of trauma-susceptible animals did not differ in terms of spine density or gene expression but displayed more active neurons during trauma encoding and a lower amount of somatostatin neurons. Collectively, we here report on specific structural and functional changes in the ventral DG in trauma susceptible male mice.


Assuntos
Giro Denteado , Somatostatina , Masculino , Animais
2.
Cell Metab ; 31(6): 1120-1135.e7, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32402266

RESUMO

Anti-obesity drugs in the amphetamine (AMPH) class act in the brain to reduce appetite and increase locomotion. They are also characterized by adverse cardiovascular effects with origin that, despite absence of any in vivo evidence, is attributed to a direct sympathomimetic action in the heart. Here, we show that the cardiac side effects of AMPH originate from the brain and can be circumvented by PEGylation (PEGyAMPH) to exclude its central action. PEGyAMPH does not enter the brain and facilitates SNS activity via theß2-adrenoceptor, protecting mice against obesity by increasing lipolysis and thermogenesis, coupled to higher heat dissipation, which acts as an energy sink to increase energy expenditure without altering food intake or locomotor activity. Thus, we provide proof-of-principle for a novel class of exclusively peripheral anti-obesity sympathofacilitators that are devoid of any cardiovascular and brain-related side effects.


Assuntos
Anfetamina/farmacologia , Fármacos Antiobesidade/farmacologia , Encéfalo/efeitos dos fármacos , Obesidade/tratamento farmacológico , Animais , Encéfalo/metabolismo , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Obesidade/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...