Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 54(10): 1696-710, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23926066

RESUMO

Chrysanthemums (Chrysanthemum×morifolium Ramat.) are an important cut-flower and potted plant crop in the horticultural industry world wide. Chrysanthemums express the flavonoid 3'-hydroxylase (F3'H) gene and thus accumulate anthocyanins derived from cyanidin in their inflorescences which appear pink/red. Delphinidin-based anthocyanins are lacking due to the deficiency of a flavonoid 3', 5'-hydroxylase (F3'5'H), and so violet/blue chrysanthemum flower colors are not found. In this study, together with optimization of transgene expression and selection of the host cultivars and gene source, F3'5'H genes have been successfully utilized to produce transgenic bluish chrysanthemums that accumulate delphinidin-based anthocyanins. HPLC analysis and feeding experiments with a delphinidin precursor identified 16 cultivars of chrysanthemums out of 75 that were predicted to turn bluish upon delphinidin accumulation. A selection of eight cultivars were successfully transformed with F3'5'H genes under the control of different promoters. A pansy F3'5'H gene under the control of a chalcone synthase promoter fragment from rose resulted in the effective diversion of the anthocyanin pathway to produce delphinidin in transgenic chrysanthemum flower petals. The resultant petal color was bluish, with 40% of total anthocyanidins attributed to delphinidin. Increased delphinidin levels (up to 80%) were further achieved by hairpin RNA interference-mediated silencing of the endogenous F3'H gene. The resulting petal colors were novel bluish hues, not possible by hybridization breeding. This is the first report of the production of anthocyanins derived from delphinidin in chrysanthemum petals leading to novel flower color.


Assuntos
Antocianinas/biossíntese , Chrysanthemum/genética , Flores/genética , Engenharia Metabólica/métodos , Pigmentação/genética , Aciltransferases/genética , Antocianinas/análise , Vias Biossintéticas/genética , Cromatografia Líquida de Alta Pressão , Chrysanthemum/metabolismo , Cor , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa
2.
Plant Physiol Biochem ; 48(12): 945-51, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20933433

RESUMO

In maize, carbonic anhydrase (CA; EC 4.2.1.1) catalyzes the first reaction of the C(4) photosynthetic pathway; it catalyzes the hydration of CO(2) to bicarbonate and provides an inorganic carbon source for the primary carboxylation reaction catalyzed by phosphoenolpyruvate (PEP) carboxylase. The ß-CA isozymes from maize, as well as other agronomically important NADP-malic enzyme (NADP-ME) type C(4) crops, have remained relatively uncharacterized but differ significantly from the ß-CAs of other C(4) monocot species primarily due to transcript length and the presence of repeat sequences. This research confirmed earlier findings of repeat sequences in maize CA transcripts, and demonstrated that the gene encoding these transcripts is also composed of repeat sequences. One of the maize CA genes was sequenced and found to encode two domains, with distinct groups of exons corresponding to the repeat regions of the transcript. We have also shown that expression of a single repeat region of the CA transcript produced active enzyme that associated as a dimer and was composed primarily of α-helices, consistent with that observed for other plant CAs. As the presence of repeat regions in the CA gene is unique to NADP-ME type C(4) monocot species, the implications of these findings in the context of the evolution of the location and function of this C(4) pathway enzyme are strongly suggestive of CA gene duplication resulting in an evolutionary advantage and a higher photosynthetic efficiency.


Assuntos
Anidrases Carbônicas/genética , Expressão Gênica , Genes de Plantas , Fotossíntese/genética , RNA Mensageiro/análise , Sequências Repetitivas de Ácido Nucleico , Zea mays/genética , Sequência de Bases , Carbono/metabolismo , Anidrases Carbônicas/metabolismo , Dimerização , Enzimas/química , Enzimas/genética , Éxons , Duplicação Gênica , Fotossíntese/fisiologia , Análise de Sequência de DNA , Zea mays/enzimologia , Zea mays/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...