Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood ; 140(19): 2037-2052, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-35984907

RESUMO

Targeting altered tumor cell metabolism might provide an attractive opportunity for patients with acute myeloid leukemia (AML). An amino acid dropout screen on primary leukemic stem cells and progenitor populations revealed a number of amino acid dependencies, of which methionine was one of the strongest. By using various metabolite rescue experiments, nuclear magnetic resonance-based metabolite quantifications and 13C-tracing, polysomal profiling, and chromatin immunoprecipitation sequencing, we identified that methionine is used predominantly for protein translation and to provide methyl groups to histones via S-adenosylmethionine for epigenetic marking. H3K36me3 was consistently the most heavily impacted mark following loss of methionine. Methionine depletion also reduced total RNA levels, enhanced apoptosis, and induced a cell cycle block. Reactive oxygen species levels were not increased following methionine depletion, and replacement of methionine with glutathione or N-acetylcysteine could not rescue phenotypes, excluding a role for methionine in controlling redox balance control in AML. Although considered to be an essential amino acid, methionine can be recycled from homocysteine. We uncovered that this is primarily performed by the enzyme methionine synthase and only when methionine availability becomes limiting. In vivo, dietary methionine starvation was not only tolerated by mice, but also significantly delayed both cell line and patient-derived AML progression. Finally, we show that inhibition of the H3K36-specific methyltransferase SETD2 phenocopies much of the cytotoxic effects of methionine depletion, providing a more targeted therapeutic approach. In conclusion, we show that methionine depletion is a vulnerability in AML that can be exploited therapeutically, and we provide mechanistic insight into how cells metabolize and recycle methionine.


Assuntos
Leucemia Mieloide Aguda , Metionina , Camundongos , Animais , Leucemia Mieloide Aguda/patologia , S-Adenosilmetionina/metabolismo , S-Adenosilmetionina/uso terapêutico , Histonas/metabolismo , Racemetionina
2.
Clin Transl Immunology ; 9(9): e1164, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32884747

RESUMO

OBJECTIVE: To determine the presence and spatial distribution of different macrophage phenotypes, governed by granulocyte macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) skewing signals, in giant cell arteritis (GCA) lesions. METHODS: Temporal artery biopsies (TABs, n = 11) from treatment-naive GCA patients, aorta samples from GCA-related aneurysms (n = 10) and atherosclerosis (n = 10) were stained by immunohistochemistry targeting selected macrophage phenotypic markers, cytokines, matrix metalloproteinases (MMPs) and growth factors. In vitro macrophage differentiation (n = 10) followed by flow cytometry, Luminex assay and ELISA were performed to assess whether GM-CSF and M-CSF are drivers of macrophage phenotypic heterogeneity. RESULTS: A distinct spatial distribution pattern of macrophage phenotypes in TABs was identified. CD206+/MMP-9+ macrophages were located at the site of tissue destruction, whereas FRß+ macrophages were located in the inner intima of arteries with high degrees of intimal hyperplasia. Notably, this pattern was also observed in macrophage-rich areas in GCA aortas but not in atherosclerotic aortas. Flow cytometry showed that GM-CSF treatment highly upregulated CD206 expression, while FRß was expressed by M-CSF-skewed macrophages, only. Furthermore, localised expression of GM-CSF and M-CSF was detected, likely contributing to macrophage heterogeneity in the vascular wall. CONCLUSIONS: Our data document a distinct spatial distribution pattern of CD206+/MMP-9+ macrophages and FRß+ macrophages in GCA linked to tissue destruction and intimal proliferation, respectively. We suggest that these distinct macrophage phenotypes are skewed by sequential GM-CSF and M-CSF signals. Our study adds to a better understanding of the development and functional role of macrophage phenotypes in the pathogenesis of GCA and opens opportunities for the design of macrophage-targeted therapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...