Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37527301

RESUMO

This article proposes the first hardware implemen-tation of a low-power LSTM neural network targeting a wearable medical device designed to predict blood glucose at a 30-minute horizon. This work aims to reduce energy consumption by propos-ing new activation functions that target hardware implementation. On top of this proposal, we also prove there is room for improve-ment in energy consumption by applying neural network optimiza-tions at the algorithmic, such as quantization, and architecture level, LSTM hyperparameters, that consider the target hardware. To validate our proposal, we devise an optimized version of the neural network aimed to be wearable and, therefore, to reduce its energy consumption while preserving its accuracy as much as possible. The hardware is implemented on a Xilinx Virtex-7 FPGA VC707 Evaluation Kit. It is compared with (i) a faithful design of the original neural network implemented on the same evaluation kit, (ii) three state-of-the-art LSTM-based FPGA implementations, and (iii) software implementations running in cutting-edge smartphones:OnePlus NordTM and an Apple iPhone 13 ProTM with artificial in-telligence hardware accelerators. Our proposal consumes between ×1020 and ×7 less energy than the software implementations, being the most efficient system compared to the smartphones. On the other hand, its energy efficiency, measured in GFLOP/J, is between ×2.84 and ×7.82 greater than other state-of-the-art LSTM implementations, proving to be the most suitable implementation for a wearable system for blood glucose prediction.

2.
Sensors (Basel) ; 21(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34770397

RESUMO

This article proposes two ensemble neural network-based models for blood glucose prediction at three different prediction horizons-30, 60, and 120 min-and compares their performance with ten recently proposed neural networks. The twelve models' performances are evaluated under the same OhioT1DM Dataset, preprocessing workflow, and tools at the three prediction horizons using the most common metrics in blood glucose prediction, and we rank the best-performing ones using three methods devised for the statistical comparison of the performance of multiple algorithms: scmamp, model confidence set, and superior predictive ability. Our analysis provides a comparison of the state-of-the-art neural networks for blood glucose prediction, estimating the model's error, highlighting those with the highest probability of being the best predictors, and providing a guide for their use in clinical practice.


Assuntos
Glicemia , Diabetes Mellitus Tipo 1 , Algoritmos , Automonitorização da Glicemia , Humanos , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...