Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 8(1): eabj5473, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34985951

RESUMO

Myocardial ischemia is spontaneous, frequently asymptomatic, and contributes to fatal cardiovascular consequences. Importantly, myocardial sensory networks cannot reliably detect and correct myocardial ischemia on their own. Here, we demonstrate an artificially intelligent and responsive bioelectronic medicine, where an artificial neural network (ANN) supplements myocardial sensory networks, enabling reliable detection and correction of myocardial ischemia. ANNs were first trained to decode spontaneous cardiovascular stress and myocardial ischemia with an overall accuracy of ~92%. ANN-controlled vagus nerve stimulation (VNS) significantly mitigated major physiological features of myocardial ischemia, including ST depression and arrhythmias. In contrast, open-loop VNS or ANN-controlled VNS following a caudal vagotomy essentially failed to reverse cardiovascular pathophysiology. Last, variants of ANNs were used to meet clinically relevant needs, including interpretable visualizations and unsupervised detection of emerging cardiovascular stress. Overall, these preclinical results suggest that ANNs can potentially supplement deficient myocardial sensory networks via an artificially intelligent bioelectronic medicine system.

2.
Eur J Pharmacol ; 842: 111-117, 2019 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-30347181

RESUMO

L-NAME-induced hypertension is commonly used to study endothelial dysfunction and related vascular effects. It has been reported that genetic deletion of A1 adenosine receptor (AR) reduces blood pressure (BP) increases in mice and thus, suggesting the involvement of A1AR. Thus, we sought to determine whether A1AR-induced vascular responses were altered in this mouse model of hypertension. L-NAME (1 mg/ml) was given in the drinking water for 28 days to mice. The BP was monitored using non-invasive tail-cuff system. Muscle tension studies were performed using DMT for mesenteric arteries (MAs) and organ bath for aorta. Protein expression was analyzed by western blot. Significantly, higher systolic and mean arterial blood pressure was noted in L-NAME mice. In MAs, higher 2-Chloro-N6-cyclopentyladenosine (CCPA, selective A1AR agonist) induced contractions in hypertensive mice were observed. This enhanced contraction was inhibited by HET0016 (Cytochrome 450 4A inhibitor, 10 µM, 15 min). Contrary, 5'-(N-Ethylcarboxamido) adenosine (NECA, non-selective AR agonist) induced vascular responses were comparable in both groups. Pinacidil (KATP channel opener) induced relaxation was significantly increased in hypertensive mice. In aorta, CCPA-induced contractions were enhanced and inhibited by HET0016 in hypertensive mice. Notably, NECA-induced contractions in aorta were enhanced in hypertensive mice. Higher expressions of A1AR and Cyp4A were noted in MAs of hypertensive mice. In addition, in aorta, higher A1AR and comparable Cyp4A levels were observed in hypertensive mice. A1AR-induced vascular contractions were enhanced in hypertensive mice aorta and MAs. Cyp4A plays a role in altered vascular responses in MAs.


Assuntos
Aorta/fisiopatologia , Hipertensão/fisiopatologia , Artérias Mesentéricas/fisiopatologia , NG-Nitroarginina Metil Éster/farmacologia , Receptor A1 de Adenosina/metabolismo , Vasoconstrição/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Animais , Aorta/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Citocromo P-450 CYP4A/metabolismo , Modelos Animais de Doenças , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo III/metabolismo
3.
Eur J Pharmacol ; 820: 191-197, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29269016

RESUMO

Activation of adenosine receptors has been implicated in several biological functions, including cardiovascular and renal function. Diabetes causes morphological and functional changes in the vasculature, resulting in abnormal responses to various stimuli. Recent studies have suggested that adenosine receptor expression and signaling are altered in disease states such as hypertension, diabetes. Using a streptozotocin (STZ) mouse model of type I diabetes (T1D), we investigated the functional changes in aorta and resistance mesenteric arteries to adenosine receptor agonist activation in T1D. Organ baths and DMT wire myographs were used for muscle tension measurements in isolated vascular rings, and western blotting was used for protein analysis. Concentration response curves to selective adenosine receptor agonists, including CCPA (A1 receptor agonist), Cl-IBMECA (A3 receptor agonist), CGS-21680 (A2A receptor agonist), and BAY 60-6583 (A2B receptor agonist), were performed. We found that diabetes did not affect adenosine receptor agonist-mediated relaxation or contraction in mesenteric arteries. However, aortas from diabetic mice exhibited a significant decrease (P < 0.05) in A1 receptor-mediated vasoconstriction. In addition, the aortas from STZ-treated mice exhibited an increase in phenylephrine-mediated contraction (EC50 7.40 ± 0.08 in STZ vs 6.89 ± 0.14 in vehicle; P < 0.05), while relaxation to A2A receptor agonists (CGS-21680) tended to decrease in aortas from the STZ-treated group (not statistically significant). Our data suggest that changes in adenosine receptor(s) vascular reactivity in T1D is tissue specific, and the decrease in A1 receptor-mediated aortic contraction could be a compensatory mechanism to counterbalance the increased adrenergic vascular contractility observed in aortas from diabetic mice.


Assuntos
Aorta/fisiopatologia , Diabetes Mellitus Tipo 1/metabolismo , Artérias Mesentéricas/fisiopatologia , Receptores Purinérgicos P1/metabolismo , Animais , Glicemia/metabolismo , Peso Corporal , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vasoconstrição , Vasodilatação
4.
Purinergic Signal ; 13(4): 591-600, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28929376

RESUMO

Uridine adenosine tetraphosphate (Up4A) exerts potent relaxation in porcine coronary arteries that is reduced following myocardial infarction, suggesting a crucial role for Up4A in the regulation of coronary flow (CF) in cardiovascular disorders. We evaluated the vasoactive effects of Up4A on CF in atherosclerosis using ApoE knockout (KO) mice ex vivo and in vivo. Functional studies were conducted in isolated mouse hearts using the Langendorff technique. Immunofluorescence was performed to assess purinergic P2X1 receptor (P2X1R) expression in isolated mouse coronary arteries. In vivo effects of Up4A on coronary blood flow (CBF) were assessed using ultrasound. Infusion of Up4A (10-9-10-5 M) into isolated mouse hearts resulted in a concentration-dependent reduction in CF in WT and ApoE KO mice to a similar extent; this effect was exacerbated in ApoE KO mice fed a high-fat diet (HFD). The P2X1R antagonist MRS2159 restored Up4A-mediated decreases in CF more so in ApoE KO + HFD than ApoE KO mice. The smooth muscle to endothelial cell ratio of coronary P2X1R expression was greater in ApoE KO + HFD than ApoE KO or WT mice, suggesting a net vasoconstrictor potential of P2X1R in ApoE KO + HFD mice. In contrast, Up4A (1.6 mg/kg) increased CBF to a similar extent among the three groups. In conclusion, Up4A decreases CF more in ApoE KO + HFD mice, likely through a net upregulation of vasoconstrictor P2X1R. In contrast, Up4A increases CBF in vivo regardless of the atherosclerotic model.


Assuntos
Aterosclerose/metabolismo , Circulação Coronária/efeitos dos fármacos , Fosfatos de Dinucleosídeos/farmacologia , Receptores Purinérgicos P2X1/metabolismo , Animais , Preparação de Coração Isolado , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Antagonistas do Receptor Purinérgico P2X/farmacologia
5.
Am J Hypertens ; 30(3): 304-312, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28034895

RESUMO

OBJECTIVE: We previously showed that uridine adenosine tetraphosphate (Up4A)-mediated aortic contraction is partly mediated through purinergic P2X1 receptors (P2X1R). It has been reported that the plasma level of Up4A is elevated in hypertensive patients, implying a potential role for Up4A-P2X1R signaling in hypertension. This study investigated the vasoactive effect of Up4A in aortas isolated from angiotensin (Ang) II-infused (21 days) hypertensive mice. METHODS: Blood pressure was measured by tail cuff plethysmography. Aortas were isolated for isometric tension measurements, and protein expression was analyzed by western blot. RESULTS: Mean and systolic arterial pressures were elevated by ~50% in Ang II-infused mice. Protein levels of both AT1R and P2X1R were upregulated in Ang II-infused aortas. Surprisingly, Up4A (10-9-10-5 M)-induced concentration-dependent contraction was significantly impaired in Ang II-infused mice. Studies in control mice revealed that both P2X1R (MRS2159) and AT1R (losartan) antagonists significantly attenuated Up4A-induced aortic contraction. In addition, desensitization of AT1R by prior Ang II (100 nM) exposure had no effect on Up4A-induced aortic contraction. However, subsequent serial exposure responses to Up4A-induced aortic contraction were markedly reduced, suggesting a desensitization of purinergic receptors. This desensitization was further confirmed in control mice by prior exposure of aortas to the P2X1R desensitizer α, ß-methylene ATP (10 µM). CONCLUSION: Despite upregulation of AT1R and P2X1R in hypertension, Up4A-mediated aortic contraction was impaired in Ang II-infused mice, likely through the desensitization of P2X1R but not AT1R. This implies that vascular P2X1R activity, rather than plasma Up4A level, may determine the role of Up4A in hypertension.


Assuntos
Angiotensina II , Fosfatos de Dinucleosídeos/farmacologia , Hipertensão/induzido quimicamente , Hipertensão/fisiopatologia , Contração Miocárdica/efeitos dos fármacos , Receptor Tipo 1 de Angiotensina/efeitos dos fármacos , Receptores Purinérgicos P2X1/efeitos dos fármacos , Vasoconstritores , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Aorta/efeitos dos fármacos , Pressão Arterial , Pressão Sanguínea , Contração Isométrica/efeitos dos fármacos , Losartan/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
6.
Purinergic Signal ; 13(1): 27-49, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27696085

RESUMO

Influences of adenosine 2A receptor (A2AR) activity on the cardiac transcriptome and genesis of endotoxemic myocarditis are unclear. We applied transcriptomic profiling (39 K Affymetrix arrays) to identify A2AR-sensitive molecules, revealed by receptor knockout (KO), in healthy and endotoxemic hearts. Baseline cardiac function was unaltered and only 37 A2AR-sensitive genes modified by A2AR KO (≥1.2-fold change, <5 % FDR); the five most induced are Mtr, Ppbp, Chac1, Ctsk and Cnpy2 and the five most repressed are Hp, Yipf4, Acta1, Cidec and Map3k2. Few canonical paths were impacted, with altered Gnb1, Prkar2b, Pde3b and Map3k2 (among others) implicating modified G protein/cAMP/PKA and cGMP/NOS signalling. Lipopolysaccharide (LPS; 20 mg/kg) challenge for 24 h modified >4100 transcripts in wild-type (WT) myocardium (≥1.5-fold change, FDR < 1 %); the most induced are Lcn2 (+590); Saa3 (+516); Serpina3n (+122); Cxcl9 (+101) and Cxcl1 (+89) and the most repressed are Car3 (-38); Adipoq (-17); Atgrl1/Aplnr (-14); H19 (-11) and Itga8 (-8). Canonical responses centred on inflammation, immunity, cell death and remodelling, with pronounced amplification of toll-like receptor (TLR) and underlying JAK-STAT, NFκB and MAPK pathways, and a 'cardio-depressant' profile encompassing suppressed ß-adrenergic, PKA and Ca2+ signalling, electromechanical and mitochondrial function (and major shifts in transcripts impacting function/injury including Lcn2, S100a8/S100a9, Icam1/Vcam and Nox2 induction, and Adipoq, Igf1 and Aplnr repression). Endotoxemic responses were selectively modified by A2AR KO, supporting inflammatory suppression via A2AR sensitive shifts in regulators of NFκB and JAK-STAT signalling (IκBζ, IκBα, STAT1, CDKN1a and RRAS2) without impacting the cardio-depressant gene profile. Data indicate A2ARs exert minor effects in un-stressed myocardium and selectively suppress NFκB and JAK-STAT signalling and cardiac injury without influencing cardiac depression in endotoxemia.


Assuntos
Endotoxemia/metabolismo , Miocárdio/metabolismo , Receptor A2A de Adenosina/metabolismo , Animais , Endotoxemia/genética , Perfilação da Expressão Gênica , Inflamação/genética , Inflamação/metabolismo , Janus Quinase 1/metabolismo , Camundongos , Camundongos Knockout , NF-kappa B/metabolismo , Receptor A2A de Adenosina/genética , Fatores de Transcrição STAT/metabolismo , Transcriptoma
7.
Physiol Rep ; 4(11)2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27302991

RESUMO

Bolus injections of adenosine and the A2A adenosine receptor (AR) selective agonist (regadenoson) are used clinically as a substitute for a stress test in people who cannot exercise. Using isolated tissue preparations, our lab has shown that coronary flow and cardiac effects of adenosine are mostly regulated by the AR subtypes A1, A2A, and A2B In this study, we used ultrasound imaging to measure the in vivo effects of adenosine on coronary blood flow (left coronary artery) and cardiac function in anesthetized wild-type, A1 knockout (KO), A2AKO, A2BKO, A3KO, A1, and A3 double KO (A1/3 DKO) and A2A and A2B double KO (A2A/2B DKO) mice in real time. Echocardiographic and Doppler studies were performed using a Visualsonic Vevo 2100 ultrasound system. Coronary blood flow (CBF) baseline data were obtained when animals were anesthetized with 1% isoflourane. Diameter (D) and velocity time integral (VTI) were measured on the left coronary arteries (CBF = ((π/4) × D(2) × VTI × HR)/1000). CBF changes were the highest within 2 min of injection (about 10 mg/kg). Heart rate, cardiac output, and stroke volume were measured by tracing the left ventricle long axis. Our data support a role for the A2 AR in CBF and further support our conclusions of previous studies from isolated tissues. Adenosine-mediated decreases in cardiac output and stroke volume may be A2B and/or A3 AR-mediated; however, the A1 and A2 ARs also play roles in overall cardiac function. These data further provide a powerful translational tool in studying the cardiovascular effects of adenosine in disease states.


Assuntos
Agonistas do Receptor A2 de Adenosina/farmacologia , Adenosina/farmacologia , Velocidade do Fluxo Sanguíneo/efeitos dos fármacos , Vasos Coronários/efeitos dos fármacos , Receptores Purinérgicos P1/genética , Fluxo Sanguíneo Regional/efeitos dos fármacos , Animais , Débito Cardíaco/efeitos dos fármacos , Camundongos , Camundongos Knockout , Receptores Purinérgicos P1/metabolismo , Volume Sistólico/efeitos dos fármacos
8.
J Mol Cell Cardiol ; 90: 30-7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26654777

RESUMO

Adenosine A2A receptor (A2AAR) activation plays a major role in the regulation of coronary flow (CF). Recent studies from our laboratory and others have suggested that A2AAR expression and/or signaling is altered in disease conditions. However, the coronary response to AR activation, in particular A2AAR, in diabetes is not fully understood. In this study, we use an STZ mouse model of type 1 diabetes (T1D) to look at CF responses to the nonspecific AR agonist NECA and the A2AAR specific agonist CGS 21680 in-vivo and ex-vivo. Using immunofluorescence, we also explored the effect of diabetes on A2AAR expression in coronary arteries. NECA mediated increase in CF was significantly increased in hearts isolated from STZ-induced diabetic mice. In addition, both in in-vivo and ex-vivo responses to A2AAR activation using CGS 21680 were significantly higher in diabetic mice when compared to their controls. Immunohistochemistry showed an upregulation of A2AAR in both coronary smooth muscle and endothelial cells (~160% and ~140%, respectively). Our data suggest that diabetes resulted in an increased A2AAR expression in coronary arteries which resulted in enhanced A2AAR-mediated increase in CF observed in diabetic hearts. This is the first report implying that A2AAR has a role in the regulation of CF in diabetes, supporting recent studies suggesting that the use of adenosine and its A2A selective agonist (regadenoson, Lexiscan®) may not be appropriate for the detection of coronary artery diseases in T1D and the estimation of coronary reserve.


Assuntos
Circulação Coronária/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Células Endoteliais/efeitos dos fármacos , Receptor A2A de Adenosina/genética , Receptor A2B de Adenosina/genética , Adenosina/análogos & derivados , Adenosina/farmacologia , Agonistas do Receptor A2 de Adenosina/farmacologia , Adenosina-5'-(N-etilcarboxamida)/farmacologia , Animais , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/metabolismo , Vasos Coronários/patologia , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Regulação da Expressão Gênica , Coração/efeitos dos fármacos , Coração/fisiopatologia , Humanos , Masculino , Camundongos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Técnicas de Cultura de Órgãos , Fenetilaminas/farmacologia , Receptor A2A de Adenosina/metabolismo , Receptor A2B de Adenosina/metabolismo , Transdução de Sinais , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
9.
Microcirculation ; 22(7): 518-27, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26201383

RESUMO

OBJECTIVE: Sex plays an important role in the pathophysiology of cardiovascular diseases. This study aims to investigate how sex impacts on the coronary flow regulation during atherosclerosis. METHODS: ApoE KO mouse fed with western diet were used for atherosclerosis model. Coronary RH and flow response were measured using Langendorff-perfused isolated hearts. RESULTS: Coronary RH and A23187-induced NO-dependent flow increases were significantly reduced in female (by ~28% and 48%, respectively), but not in male atherosclerotic mice. However, SNP-induced coronary vasodilation remains intact in both sexes of ApoE KO mice. L-NAME (NOS inhibitor) reduced baseline flow and RH to a lesser extent in ApoE KO (by ~19% and 31%) vs. WT (~30% and 59%, respectively), and abolished the sex difference in RH. In contrast, SCH58261 (a selective A2A AR antagonist) reduced the baseline flow and RH to a greater extent in atherosclerotic mice, but did not affect the sex difference. Immunofluorescent staining of coronary arteries showed a similar A2A AR upregulation in both sexes of ApoE KO mice. CONCLUSIONS: Our results suggest that during atherosclerosis, female mice are more susceptible to NO-dependent endothelial dysfunction and the upregulation of A2A AR may serve as a compensatory mechanism to counteract the compromised endothelial function.


Assuntos
Apolipoproteínas E/deficiência , Aterosclerose/metabolismo , Circulação Coronária , Vasos Coronários/metabolismo , Endotélio Vascular/metabolismo , Óxido Nítrico/metabolismo , Receptor A2A de Adenosina/metabolismo , Animais , Aterosclerose/genética , Aterosclerose/patologia , Vasos Coronários/patologia , Modelos Animais de Doenças , Endotélio Vascular/patologia , Feminino , Masculino , Camundongos , Camundongos Knockout , Óxido Nítrico/genética , Receptor A2A de Adenosina/genética , Caracteres Sexuais
10.
Purinergic Signal ; 11(2): 263-73, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25911169

RESUMO

Adenosine increases coronary flow mainly through the activation of A2A and A2B adenosine receptors (ARs). However, the mechanisms for the regulation of coronary flow are not fully understood. We previously demonstrated that adenosine-induced increase in coronary flow is in part through NADPH oxidase (Nox) activation, which is independent of activation of either A1 or A3ARs. In this study, we hypothesize that adenosine-mediated increase in coronary flow through Nox activation depends on A2A but not A2BARs. Functional studies were conducted using isolated Langendorff-perfused mouse hearts. Hydrogen peroxide (H2O2) production was measured in isolated coronary arteries from WT, A2AAR knockout (KO), and A2BAR KO mice using dichlorofluorescein immunofluorescence. Adenosine-induced concentration-dependent increase in coronary flow was attenuated by the specific Nox2 inhibitor gp91 ds-tat or reactive oxygen species (ROS) scavenger EUK134 in both WT and A2B but not A2AAR KO isolated hearts. Similarly, the A2AAR selective agonist CGS-21680-induced increase in coronary flow was significantly blunted by Nox2 inhibition in both WT and A2BAR KO, while the A2BAR selective agonist BAY 60-6583-induced increase in coronary flow was not affected by Nox2 inhibition in WT. In intact isolated coronary arteries, adenosine-induced (10 µM) increase in H2O2 formation in both WT and A2BAR KO mice was attenuated by Nox2 inhibition, whereas adenosine failed to increase H2O2 production in A2AAR KO mice. In conclusion, adenosine-induced increase in coronary flow is partially mediated by Nox2-derived H2O2, which critically depends upon the presence of A2AAR.


Assuntos
Vasos Coronários/efeitos dos fármacos , Miocárdio/metabolismo , NADPH Oxidases/metabolismo , Receptor A2A de Adenosina/metabolismo , Aminopiridinas/farmacologia , Animais , Coração/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor A2B de Adenosina/metabolismo , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia
11.
Am J Physiol Heart Circ Physiol ; 307(7): H1046-55, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25108010

RESUMO

We have previously demonstrated that adenosine-mediated H2O2 production and opening of ATP-sensitive K(+) (KATP) channels contributes to coronary reactive hyperemia. The present study aimed to investigate the roles of adenosine, H2O2, and KATP channels in coronary metabolic hyperemia (MH). Experiments were conducted on isolated Langendorff-perfused mouse hearts using combined pharmacological approaches with adenosine receptor (AR) knockout mice. MH was induced by electrical pacing at graded frequencies. Coronary flow increased linearly from 14.4 ± 1.2 to 20.6 ± 1.2 ml·min(-1)·g(-1) with an increase in heart rate from 400 to 650 beats/min in wild-type mice. Neither non-selective blockade of ARs by 8-(p-sulfophenyl)theophylline (8-SPT; 50 µM) nor selective A2AAR blockade by SCH-58261 (1 µM) or deletion affected MH, although resting flow and left ventricular developed pressure were reduced. Combined A2AAR and A2BAR blockade or deletion showed similar effects as 8-SPT. Inhibition of nitric oxide synthesis by N-nitro-l-arginine methyl ester (100 µM) or combined 8-SPT administration failed to reduce MH, although resting flows were reduced (by ∼20%). However, glibenclamide (KATP channel blocker, 5 µM) decreased not only resting flow (by ∼45%) and left ventricular developed pressure (by ∼36%) but also markedly reduced MH by ∼94%, resulting in cardiac contractile dysfunction. Scavenging of H2O2 by catalase (2,500 U/min) also decreased resting flow (by ∼16%) and MH (by ∼24%) but to a lesser extent than glibenclamide. Our results suggest that while adenosine modulates coronary flow under both resting and ischemic conditions, it is not required for MH. However, H2O2 and KATP channels are important local control mechanisms responsible for both coronary ischemic and metabolic vasodilation.


Assuntos
Circulação Coronária , Peróxido de Hidrogênio/metabolismo , Hiperemia/metabolismo , Canais KATP/metabolismo , Receptores Purinérgicos P1/metabolismo , Adenosina/metabolismo , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Sequestradores de Radicais Livres/farmacologia , Glibureto/farmacologia , Coração/efeitos dos fármacos , Coração/fisiologia , Hiperemia/fisiopatologia , Técnicas In Vitro , Canais KATP/antagonistas & inibidores , Canais KATP/genética , Camundongos , Camundongos Endogâmicos C57BL , Contração Miocárdica , Miocárdio/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Pirimidinas/farmacologia , Receptores Purinérgicos P1/genética , Teofilina/análogos & derivados , Teofilina/farmacologia , Triazóis/farmacologia
12.
Cardiovasc Res ; 102(1): 157-65, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24525840

RESUMO

AIMS: The goal of this study was to determine whether the A1 adenosine receptor (AR) plays a role in atherosclerosis development and to explore its potential mechanisms. METHODS AND RESULTS: Double knockout (DKO) mice, deficient in the genes encoding A1 AR and apolipoprotein E (apoE), demonstrated reduced atherosclerotic lesions in aortic arch (en face), aortic root, and innominate arteries when compared with apoE-deficient mice (APOE-KO) of the same age. Treating APOE-KO with an A1 AR antagonist (DPCPX) also led to a concentration-dependent reduction in lesions. The total plasma cholesterol and triglyceride levels were not different between DKO and APOE-KO; however, higher triglyceride was observed in DKO fed a high-fat diet. DKO also had higher body weights than APOE-KO. Plasma cytokine concentrations (IL-5, IL-6, and IL-13) were significantly lower in DKO. Proliferating cell nuclear antigen expression was also significantly reduced in the aorta from DKO. Despite smaller lesions in DKO, the composition of the innominate artery lesion and cholesterol loading and efflux from bone marrow-derived macrophages of DKO were not different from APOE-KO. CONCLUSION: The A1 AR may play a role in the development of atherosclerosis, possibly due to its pro-inflammatory and mitogenic properties.


Assuntos
Apolipoproteínas E/deficiência , Aterosclerose/metabolismo , Colesterol/metabolismo , Receptor A1 de Adenosina/metabolismo , Animais , Aorta/metabolismo , Modelos Animais de Doenças , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor A1 de Adenosina/deficiência
13.
Physiol Rep ; 1(3): e00070, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24159377

RESUMO

The NADPH oxidase (Nox) subunits 1, 2 (gp91 phox) and 4 are the major sources for reactive oxygen species (ROS) in cardiovascular system. In conditions such as ischemia-reperfusion injury and hypoxia, both ROS and adenosine are released suggesting a possible interaction. We hypothesized that ROS generated through Nox is involved in adenosine-induced coronary flow (CF) responses. Adenosine (10-8-10-5.5 M) increased CF in isolated hearts from wild type (WT; C57/BL6), A1 adenosine receptor (AR) knockout (A1KO), A3AR KO (A3KO) and A1 and A3AR double KO (A1/A3DKO) mice. The Nox inhibitors apocynin (10-5 M) and gp91 ds-tat (10-6 M) or the SOD and catalase-mimicking agent EUK134 (50 µM) decreased the adenosine-enhanced CF in the WT and all the KOs. Additionally, adenosine increased phosphorylation of p47-phox subunit and ERK 1/2 without changing protein expression of Nox isoforms in WT. Moreover, intracellular superoxide production was increased by adenosine and CGS-21680 (a selective A2A agonist), but not BAY 60-6583 (a selective A2B agonist), in mouse coronary artery smooth muscle cells (CASMCs) and endothelial cells (CAECs). This superoxide increase was inhibited by the gp91 ds-tat and ERK 1/2 inhibitor (PD98059). In conclusion, adenosine-induced increase in CF in isolated heart involves Nox2-generated superoxide, possibly through ERK 1/2 phosphorylation with subsequent p47-phox subunit phosphorylation. This adenosine/Nox/ROS interaction occurs in both CASMCs and CAECs, and involves neither A1 nor A3 ARs, but possibly A2A ARs in mouse.

14.
Am J Physiol Heart Circ Physiol ; 305(11): H1668-79, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24043252

RESUMO

We previously demonstrated that A2A, but not A2B, adenosine receptors (ARs) mediate coronary reactive hyperemia (RH), possibly by producing H2O2 and, subsequently, opening ATP-dependent K(+) (KATP) channels in coronary smooth muscle cells. In this study, A1 AR knockout (KO), A3 AR KO, and A1 and A3 AR double-KO (A1/A3 DKO) mice were used to investigate the roles and mechanisms of A1 and A3 ARs in modulation of coronary RH. Coronary flow of isolated hearts was measured using the Langendorff system. A1 KO and A1/A3 DKO, but not A3 KO, mice showed a higher flow debt repayment [~30% more than wild-type (WT) mice, P < 0.05] following a 15-s occlusion. SCH-58261 (a selective A2A AR antagonist, 1 µM) eliminated the augmented RH, suggesting the involvement of enhanced A2A AR-mediated signaling in A1 KO mice. In isolated coronary arteries, immunohistochemistry showed an upregulation of A2A AR (1.6 ± 0.2 times that of WT mice, P < 0.05) and a higher magnitude of adenosine-induced H2O2 production in A1 KO mice (1.8 ± 0.3 times that of WT mice, P < 0.05), which was blocked by SCH-58261. Catalase (2,500 U/ml) and glibenclamide (a KATP channel blocker, 5 µM), but not N(G)-nitro-l-arginine methyl ester, also abolished the enhanced RH in A1 KO mice. Our data suggest that A1, but not A3, AR counteracts the A2A AR-mediated CF increase and that deletion of A1 AR results in upregulation of A2A AR and/or removal of the negative modulatory effect of A1 AR, thus leading to an enhanced A2A AR-mediated H2O2 production, KATP channel opening, and coronary vasodilation during RH. This is the first report implying that A1 AR has a role in coronary RH.


Assuntos
Circulação Coronária , Vasos Coronários/metabolismo , Peróxido de Hidrogênio/metabolismo , Hiperemia/metabolismo , Canais KATP/metabolismo , Receptor A1 de Adenosina/metabolismo , Receptor A2A de Adenosina/metabolismo , Vasodilatação , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Antioxidantes/farmacologia , Circulação Coronária/efeitos dos fármacos , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/fisiopatologia , Feminino , Hiperemia/genética , Hiperemia/fisiopatologia , Canais KATP/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Perfusão , Bloqueadores dos Canais de Potássio/farmacologia , Receptor A1 de Adenosina/deficiência , Receptor A1 de Adenosina/genética , Receptor A2A de Adenosina/efeitos dos fármacos , Receptor A3 de Adenosina/genética , Receptor A3 de Adenosina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Vasodilatação/efeitos dos fármacos
15.
Am J Physiol Heart Circ Physiol ; 304(10): H1294-301, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23525711

RESUMO

Myocardial metabolites such as adenosine mediate reactive hyperemia, in part, by activating ATP-dependent K(+) (K(ATP)) channels in coronary smooth muscle. In this study, we investigated the role of adenosine A(2A) and A(2B) receptors and their signaling mechanisms in reactive hyperemia. We hypothesized that coronary reactive hyperemia involves A(2A) receptors, hydrogen peroxide (H(2)O(2)), and KATP channels. We used A(2A) and A(2B) knockout (KO) and A(2A/2B) double KO (DKO) mouse hearts for Langendorff experiments. Flow debt for a 15-s occlusion was repaid 128 ± 8% in hearts from wild-type (WT) mice; this was reduced in hearts from A(2A) KO and A(2A)/(2B) DKO mice (98 ± 9 and 105 ± 6%; P < 0.05), but not A(2B) KO mice (123 ± 13%). Patch-clamp experiments demonstrated that adenosine activated glibenclamide-sensitive KATP current in smooth muscle cells from WT and A(2B) KO mice (90 ± 23% of WT) but not A(2A) KO or A(2A)/A(2B) DKO mice (30 ± 4 and 35 ± 8% of WT; P < 0.05). Additionally, H(2)O(2) activated KATP current in smooth muscle cells (358 ± 99%; P < 0.05). Catalase, an enzyme that breaks down H(2)O(2), attenuated adenosine-induced coronary vasodilation, reducing the percent increase in flow from 284 ± 53 to 89 ± 13% (P < 0.05). Catalase reduced the repayment of flow debt in hearts from WT mice (84 ± 9%; P < 0.05) but had no effect on the already diminished repayment in hearts from A(2A) KO mice (98 ± 7%). Our findings suggest that adenosine A(2A) receptors are coupled to smooth muscle KATP channels in reactive hyperemia via the production of H(2)O(2) as a signaling intermediate.


Assuntos
Vasos Coronários/fisiologia , Peróxido de Hidrogênio/metabolismo , Hiperemia/fisiopatologia , Canais KATP/fisiologia , Receptor A2A de Adenosina/fisiologia , Transdução de Sinais/fisiologia , Adenosina/farmacologia , Animais , Catalase/metabolismo , Circulação Coronária/efeitos dos fármacos , Circulação Coronária/fisiologia , Glibureto/farmacologia , Hipoglicemiantes/farmacologia , Técnicas In Vitro , Canais KATP/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/efeitos dos fármacos , NADH NADPH Oxirredutases/metabolismo , Técnicas de Patch-Clamp , Receptor A2A de Adenosina/efeitos dos fármacos , Receptor A2B de Adenosina/efeitos dos fármacos , Receptor A2B de Adenosina/fisiologia , Vasodilatadores/farmacologia
16.
J Cardiovasc Pharmacol ; 61(1): 70-6, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23288107

RESUMO

Concentration-response curves (CRCs) of adenosine receptor (AR) agonists, NECA (nonspecific), CCPA (A1 specific), CGS-216870 (A2A specific), BAY 60-6583 (A2B specific), and Cl-IB-MECA (A3 specific) for mesenteric arteries (MAs) from 4 AR knockout (KO) mice (A1, A2A, A2B, and A3) and their wild type (WT) were constructed. The messenger RNA expression of MAs from KO mice and WT were also studied. Adenosine (10 to 10 M) and NECA (10 to 10 M) induced relaxation in all mice except A2B KO mice, which only showed constriction by adenosine at 10 to 10 and NECA at 10 to 10 M. The CCPA induced a significant constriction at 10 and 10 M in all mice, except A1KO. BAY 60-6583 induced relaxation (10 to 10 M) in WT and no response in A2BKO except at 10 M. The CRCs for BAY 60-6583 in A1, A2A, and A3 KO mice shifted to the left when compared with WT mice, suggesting an upregulation of A2B AR. No responses were noted to CGS-21680 in all mice. Cl-IB-MECA only induced relaxation at concentration greater than 10 M, and no differences were found between different KO mice. The CRC for Bay 60-6583 was not significantly changed in the presence of 10 M of L-NAME, 10 M of indomethacin, or both. Our data suggest that A2B AR is the predominant AR subtype and the effect may be endothelial independent, whereas A1 AR plays a significant modulatory role in mouse MAs.


Assuntos
Artérias Mesentéricas/metabolismo , Receptores Purinérgicos P1/metabolismo , Animais , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica , Artérias Mesentéricas/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Agonistas do Receptor Purinérgico P1/farmacologia , RNA Mensageiro/metabolismo , Receptor A1 de Adenosina/metabolismo , Receptor A2A de Adenosina/metabolismo , Receptor A2B de Adenosina/metabolismo , Receptor A3 de Adenosina/metabolismo , Receptores Purinérgicos P1/deficiência , Receptores Purinérgicos P1/efeitos dos fármacos , Receptores Purinérgicos P1/genética , Vasoconstrição/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos
17.
Ultrasonics ; 53(3): 727-38, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23218908

RESUMO

Ultrasound and Duplex ultrasonography in particular are routinely used to diagnose cardiovascular disease (CVD), which is the leading cause of morbidity and mortality worldwide. However, these techniques may not be able to characterize vascular tissue compositional changes due to CVD. This work describes an ultrasound-based hybrid imaging technique that can be used for vascular tissue characterization and the diagnosis of atherosclerosis. Ultrasound radiofrequency (RF) data were acquired and processed in time, frequency, and wavelet domains to extract six parameters including time integrated backscatter (T(IB)), time variance (T(var)), time entropy (T(E)), frequency integrated backscatter (F(IB)), wavelet root mean square value (W(rms)), and wavelet integrated backscatter (W(IB)). Each parameter was used to reconstruct an image co-registered to morphological B-scan. The combined set of hybrid images were used to characterize vascular tissue in vitro and in vivo using three mouse models including control (C57BL/6), and atherosclerotic apolipoprotein E-knockout (APOE-KO) and APOE/A(1) adenosine receptor double knockout (DKO) mice. The technique was tested using high-frequency ultrasound including single-element (center frequency=55 MHz) and commercial array (center frequency=40 MHz) systems providing superior spatial resolutions of 24 µm and 40 µm, respectively. Atherosclerotic vascular lesions in the APOE-KO mouse exhibited the highest values (contrast) of -10.11±1.92 dB, -12.13±2.13 dB, -7.54±1.45 dB, -5.10±1.06 dB, -5.25±0.94 dB, and -10.23±2.12 dB in T(IB), T(var), T(E), F(IB), W(rms), W(IB) hybrid images (n=10, p<0.05), respectively. Control segments of normal vascular tissue showed the lowest values of -20.20±2.71 dB, -22.54±4.54 dB, -14.94±2.05 dB, -9.64±1.34 dB, -10.20±1.27 dB, and -19.36±3.24 dB in same hybrid images (n=6, p<0.05). Results from both histology and optical images showed good agreement with ultrasound findings within a maximum error of 3.6% in lesion estimation. This study demonstrated the feasibility of a high-resolution hybrid imaging technique to diagnose atherosclerosis and characterize plaque components in mouse. In the future, it can be easily implemented on commercial ultrasound systems and eventually translated into clinics as a screening tool for atherosclerosis and the assessment of vulnerable plaques.


Assuntos
Doenças da Aorta/diagnóstico por imagem , Aterosclerose/diagnóstico por imagem , Ultrassonografia Doppler/instrumentação , Animais , Doenças da Aorta/patologia , Aterosclerose/patologia , Modelos Animais de Doenças , Processamento de Imagem Assistida por Computador , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Processamento de Sinais Assistido por Computador , Transdutores
18.
Am J Physiol Heart Circ Physiol ; 301(6): H2322-33, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21949117

RESUMO

Adenosine plays a role in physiological and pathological conditions, and A(2) adenosine receptor (AR) expression is modified in many cardiovascular disorders. In this study, we elucidated the role of the A(2B)AR and its relationship to the A(2A)AR in coronary flow (CF) changes using A(2B) single-knockout (KO) and A(2A/2B) double-KO (DKO) mice in a Langendorff setup. We used two approaches: 1) selective and nonselective AR agonists and antagonists and 2) A(2A)KO and A(2B)KO and A(2A/2B)DKO mice. BAY 60-6583 (a selective A(2B) agonist) had no effect on CF in A(2B)KO mice, whereas it significantly increased CF in wild-type (WT) mice (maximum of 23.3 ± 9 ml·min(-1)·g(-1)). 5'-N-ethylcarboxamido adenosine (NECA; a nonselective AR agonist) increased CF in A(2B)KO mice (maximum of 34.6 ± 4.7 ml·min(-1)·g(-1)) to a significantly higher degree compared with WT mice (maximum of 23.1 ± 2.1 ml·min(-1)·g(-1)). Also, CGS-21680 (a selective A(2A) agonist) increased CF in A(2B)KO mice (maximum of 29 ± 1.9 ml·min(-1)·g(-1)) to a significantly higher degree compared with WT mice (maximum of 25.1 ± 2.3 ml·min(-1)·g(-1)). SCH-58261 (an A(2A)-selective antagonist) inhibited the NECA-induced increase in CF to a significantly higher degree in A(2B)KO mice (19.3 ± 1.6 vs. 0.5 ± 0.4 ml·min(-1)·g(-1)) compared with WT mice (19 ± 3.5 vs. 3.6 ± 0.5 ml·min(-1)·g(-1)). NECA did not induce any increase in CF in A(2A/2B)DKO mice, whereas a significant increase was observed in WT mice (maximum of 23.1 ± 2.1 ml·min(-1)·g(-1)). Furthermore, the mitochondrial ATP-sensitive K(+) (K(ATP)) channel blocker 5-hydroxydecanoate had no effect on the NECA-induced increase in CF in WT mice, whereas the NECA-induced increase in CF in WT (17.6 ± 2 ml·min(-1)·g(-1)), A(2A)KO (12.5 ± 2.3 ml·min(-1)·g(-1)), and A(2B)KO (16.2 ± 0.8 ml·min(-1)·g(-1)) mice was significantly blunted by the K(ATP) channel blocker glibenclamide (to 0.7 ± 0.7, 2.3 ± 1.1, and 0.9 ± 0.4 ml·min(-1)·g(-1), respectively). Also, the CGS-21680-induced (22 ± 2.3 ml·min(-1)·g(-1)) and BAY 60-6583-induced (16.4 ± 1.60 ml·min(-1)·g(-1)) increase in CF in WT mice was significantly blunted by glibenclamide (to 1.2 ± 0.4 and 1.8 ± 1.2 ml·min(-1)·g(-1), respectively). In conclusion, this is the first evidence supporting the compensatory upregulation of A(2A)ARs in A(2B)KO mice and demonstrates that both A(2A)ARs and A(2B)ARs induce CF changes through K(ATP) channels. These results identify AR-mediated CF responses that may lead to better therapeutic approaches for the treatment of cardiovascular disorders.


Assuntos
Circulação Coronária , Vasos Coronários/metabolismo , Canais KATP/metabolismo , Receptor A2A de Adenosina/deficiência , Receptor A2B de Adenosina/deficiência , Vasodilatação , Animais , Arteríolas/metabolismo , Velocidade do Fluxo Sanguíneo , Circulação Coronária/efeitos dos fármacos , Vasos Coronários/efeitos dos fármacos , Relação Dose-Resposta a Droga , Frequência Cardíaca , Canais KATP/antagonistas & inibidores , Mesentério/irrigação sanguínea , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Perfusão , Bloqueadores dos Canais de Potássio/farmacologia , Agonistas do Receptor Purinérgico P1/farmacologia , Antagonistas de Receptores Purinérgicos P1/farmacologia , Receptor A2A de Adenosina/genética , Receptor A2B de Adenosina/genética , Vasodilatação/efeitos dos fármacos , Função Ventricular Esquerda , Pressão Ventricular
19.
J Exp Pharmacol ; 2011(3): 59-68, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21847356

RESUMO

Adenosine-induced coronary vasodilation is predominantly A(2A) adenosine receptor (AR)-mediated, whereas A(1) AR is known to negatively modulate the coronary flow (CF). However, the coronary responses to adenosine in hyperlipidemia and atherosclerosis are not well understood. Using hyperlipidemic/atherosclerotic apolipoprotein E (APOE)-knockout mice, CF responses to nonspecific adenosine agonist (5'-N-ethylcarboxamide adenosine, NECA) and specific adenosine agonists (2-chloro-N6-cyclopentyl-adenosine [CCPA, A(1) AR-specific] and CGS-21680, A(2A) AR-specific) were assessed using isolated Langendorff hearts. Western blot analysis was performed in the aorta from APOE and their wild-type (WT) control (C57BL/6J). Baseline CF (expressed as mL/min/g heart weight) was not different among WT (13.23 ± 3.58), APOE (13.22 ± 2.78), and APOE on high-fat diet (HFD) for 12 weeks (APOE-HFD, 12.37 ± 4.76). Concentration response curves induced by CGS-21680 were significantly shifted to the left in APOE and APOE-HFD when compared with WT. CCPA induced an increase in CF only at 10(-6) M in all groups and the effect was reversed by the addition of a selective A(2A) AR antagonist, SCH-58261 (10(-6) M), and a significant decrease in CF from baseline was observed. Western blot analysis showed a significant upregulation of A(2A) AR in the aorta from APOE and APOE-HFD. This study provides the first evidence that CF responses to A(2A) AR stimulation were upregulated in hyperlipidemic/atherosclerotic animals. The speculation is that the use of A(2A) AR-specific agonist for myocardial perfusion imaging (such as regadenoson) could overestimate the coronary reserve in coronary artery disease patients.

20.
Am J Physiol Heart Circ Physiol ; 300(6): H2105-15, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21441309

RESUMO

Endothelium-dependent, nitric oxide (NO)-mediated vasodilation can be impaired by reactive oxygen species (ROS), and this deleterious effect of ROS on NO availability may increase with aging. Endothelial function declines rapidly after menopause, possibly because of loss of circulating estrogen and its antioxidant effects. The purpose of the current study was to determine the role of O(2)(-) and H(2)O(2) in regulating flow-induced dilation in coronary arterioles of young (6-mo) and aged (24-mo) intact, ovariectomized (OVX), or OVX + estrogen-treated (OVE) female Fischer 344 rats. Both aging and OVX reduced flow-induced NO production, whereas flow-induced H(2)O(2) production was not altered by age or estrogen status. Flow-induced vasodilation was evaluated before and after treatment with the superoxide dismutase (SOD) mimetic Tempol (100 µM) or the H(2)O(2) scavenger catalase (100 U/ml). Removal of H(2)O(2) with catalase reduced flow-induced dilation in all groups, whereas Tempol diminished vasodilation in intact and OVE, but not OVX, rats. Immunoblot analysis revealed elevated nitrotyrosine with aging and OVX. In young rats, OVX reduced SOD protein while OVE increased SOD in aged rats; catalase protein did not differ in any group. Collectively, these studies suggest that O(2)(-) and H(2)O(2) are critical components of flow-induced vasodilation in coronary arterioles from female rats; however, a chronic deficiency of O(2)(-) buffering by SOD contributes to impaired flow-induced dilation with aging and loss of estrogen. Furthermore, these data indicate that estrogen replacement restores O(2)(-) homeostasis and flow-induced dilation of coronary arterioles, even at an advanced age.


Assuntos
Envelhecimento/metabolismo , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Estrogênios/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Antioxidantes/farmacologia , Arteríolas/efeitos dos fármacos , Arteríolas/metabolismo , Catalase/farmacologia , Óxidos N-Cíclicos/farmacologia , Feminino , Peróxido de Hidrogênio/metabolismo , Modelos Animais , Óxido Nítrico/metabolismo , Ovariectomia , Ratos , Ratos Endogâmicos F344 , Marcadores de Spin , Superóxido Dismutase/metabolismo , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...