Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(25): 32662-32678, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38863342

RESUMO

The pervasive global issue of population aging has led to a growing demand for health monitoring, while the advent of electronic wearable devices has greatly alleviated the strain on the industry. However, these devices come with inherent limitations, such as electromagnetic radiation, complex structures, and high prices. Herein, a Solaris silicone rubber-integrated PMMA polymer optical fiber (S-POF) intelligent insole sensing system has been developed for remote, portable, cost-effective, and real-time gait monitoring. The system is capable of sensitively converting the pressure of key points on the sole into changes in light intensity with correlation coefficients of 0.995, 0.952, and 0.910. The S-POF sensing structure demonstrates excellent durability with a 4.8% variation in output after 10,000 cycles and provides stable feedback for bending angles. It also exhibits water resistance and temperature resistance within a certain range. Its multichannel multiplexing framework allows a smartphone to monitor multiple S-POF channels simultaneously, meeting the requirements of convenience for daily care. Also, the system can efficiently and accurately provide parameters such as pressure, step cadence, and pressure distribution, enabling the analysis of gait phases and patterns with errors of only 4.16% and 6.25% for the stance phase (STP) and the swing phase (SWP), respectively. Likewise, after comparing various AI models, an S-POF channel-based gait pattern recognition technique has been proposed with a high accuracy of up to 96.87%. Such experimental results demonstrate that the system is promising to further promote the development of rehabilitation and healthcare.


Assuntos
Dispositivos Eletrônicos Vestíveis , Humanos , Marcha/fisiologia , Smartphone , Inteligência Artificial , Sapatos , Fibras Ópticas
2.
Opt Lett ; 49(11): 2869-2872, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824279

RESUMO

In this Letter, we propose an in-line tilted fiber Bragg grating sensor for temperature and strain measurements. The grating is inscribed in a specialty optical fiber using tightly focused femtosecond laser pulses and the line-by-line direct writing method. Beside the central core in which the grating is produced, a hollow channel filled with glycerol aqueous solution significantly improves the sensitivity of the fiber cladding modes due to its high thermo-optic coefficient. We show that the temperature sensitivity of the core mode is 9.8 pm/°C, while the one of the cladding modes is strongly altered and can reach -24.3 pm/°C, in the investigated range of 20-40°C. For the strain measurement, sensitivities of the core mode and the cladding modes are similar (∼0.60 pm/µÎµ) between 0 and 2400 µÎµ. The significative difference of temperature sensitivity between the two modes facilitates the discrimination of the dual parameters in simultaneous measurements.

3.
Biomed Opt Express ; 15(3): 1892-1909, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38495686

RESUMO

This study introduces fiber Bragg grating (FBG) sensors embedded in polydimethylsiloxane (PDMS) silicone elastomer specifically engineered for recognizing intricate gestures like wrist pitch, finger bending, and mouth movement. Sensors with different PDMS patch thicknesses underwent evaluation including thermal, tensile strain, and bending deformation characterization, demonstrating a stability of at least four months. Experiments revealed the FBG sensors' accurate wrist pitch recognition across participants after calibration, confirmed by statistical metrics and Bland-Altman plots. Utilizing finger and mouth movements, the developed system shows promise in assisting post-stroke patients and individuals with disabilities, enhancing their interaction capabilities with the external surroundings.

4.
Biomed Opt Express ; 15(3): 1585-1594, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38495715

RESUMO

We present a dynamic speckle illumination wide-field fluorescence microscopy (DSIWFM) combined with a line optical tweezers (LOTs) for rotational fluorescence sectioning imaging. In this method, large polystyrene fluorescent microspheres are stably trapped with LOTs, and precisely manipulated to rotate around a specific rotation axis. During the rotation process, multiple raw fluorescence images of trapped microspheres are obtained with dynamic speckle illumination. The root-mean-square (RMS) algorithm is used to extract the drastically changing fluorescent signals in the focal plane to obtain the fluorescence sectioning images of the samples at various angles. The influence of speckle granularity on the image quality of fluorescence sectioning images is experimentally analyzed. The rotational fluorescence sectioning images obtained by DSIWFM with LOTs could provide an alternative technique for applications of biomedical imaging.

5.
Biomed Opt Express ; 15(2): 793-801, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38404343

RESUMO

A cascaded side-polish plastic optical fiber (POF) and FONTEX optical fiber based surface plasmon resonance (SPR) sensor is proposed for simultaneous measurement of refractive index (RI) and temperature. The side-polish POF and FONTEX optical fiber are connected by using the UV glue in a Teflon plastic tube. The SPR phenomenon can be excited at both of the side-polish region and the FONTEX fiber cladding. The polydimethylsiloxane (PDMS) is coated on the side-polish POF to get a temperature sensing channel. Due to the low RI sensitivity of the FONTEX optical fiber, the cascaded fiber sensor can obtain a broader RI measurement range with a low crosstalk. An RI sensitivity of 700 nm/RIU in the RI measurement range of 1.335-1.39 and a temperature sensitivity of -1.02 nm/°C measured in deionized water with a range of 20-60 °C are obtained. In addition, the cascaded POF based SPR sensor has potential application prospects in the field of biochemical sensing.

6.
Appl Opt ; 62(28): 7346-7353, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37855501

RESUMO

Electro-optic modulators are essential devices on silicon photonic chips in modern optical communication networks. This paper presents a compact, low-loss electro-optic modulator. The modulation efficiency is greatly improved by embedding the lower half of the slot waveguide into the buried oxide layer and inserting graphene at the junction. The interaction of graphene with an optical field in a waveguide is studied using the finite element method. The functions of phase modulation and absorption modulation are realized by changing the gate voltage to change the chemical potential of graphene. The semi-embedded slot waveguide optical modulator has a length of 50 µm. After simulation verification, it can be used as an electro-absorption modulator and can achieve a modulation depth of 26.38 dB and an insertion loss of 0.60 dB. When used as an electro-refractive modulator, it can be realized with a linear change of phase from zero to π; the total insertion loss is only 0.59 dB. The modulator has a modulation bandwidth of 79.6 GHz, and the energy consumption as electro-absorption and electro-refraction modulation are 0.51 and 1.92 pj/bit, respectively. Compared with common electro-optic modulators, the electro-optic modulator designed in this paper has a higher modulation effect and also takes into account the advantages of low insertion loss and low energy consumption. This research is helpful for the design of higher-performance optical communication network devices.

7.
Appl Opt ; 62(27): 7199-7204, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37855575

RESUMO

A hot trend in the development of optoelectronic devices is how to use the principle of surface plasmon resonance to enhance the performance of integrated photonics devices and achieve miniaturization. This paper proposes an accompanying waveguide coupling structure of micro/nano fibers, which consists of two parallel-placed micro/nano fibers (MNFs) coated with a silver film in the waist region and infused with a refractive index matching oil. In the overlapping region, there exists a segment of surface plasmon polaritons (SPPs) coupling area. The excitation and coupling characteristics of SPPs are studied through numerical simulation. Optimal coupling enhancement configuration is obtained by studying variables such as spacing distance, coupling length, and metal film thickness. A comparison is made with the SPP intensity of a single MNF, showing a 220% increase in electric field intensity, demonstrating its excellent coupling effect. By using this coupling structure, exploration of SPPs excitation and coupling mechanisms is enhanced, and structures resembling interferometric devices can be designed, providing new insights for high-performance miniaturized devices.

8.
Heliyon ; 9(9): e19412, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37809555

RESUMO

PCTF (pear-shaped conjoined-tube fiber) is presented as a new ultraviolet (UV) guiding fiber with low loss. Results indicate that two PCTFs have better properties than that of previous studies in the UV band. The total loss of two PCTFs is less than 1 dB/km, and its bandwidth exceeds 150 nm between 0.2 and 0.4 µm. Furthermore, PCTF's single-mode performance is very promising, as evidenced by the higher-order mode extinction ratio (HOMER) over 103. The fabrication tolerance is discussed in this paper and results show that the tolerance is good enough to fabricate by normal fiber drawing process. This fiber is promising in applications for nonlinear optics, ultrafast optics, high power laser, and quantum optics.

9.
Sensors (Basel) ; 23(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37688031

RESUMO

This article reviews recent research progress on the annealing effects on polymer optical fibers (POFs), which are of great importance for inscription, stability and sensing applications of fiber Bragg gratings (FBGs) in POFs due to their unique properties related to polymer molecular chains. In this review, the principle of annealing to reduce frozen-in stress in POFs drawing and different annealing timings are firstly summarized. Then, the annealing methods for POFs are introduced under several different conditions (temperature, humidity, strain, stress and solution). Afterwards, the principle of FBGs and several inscription techniques are reported. Subsequently, the annealing effects on the properties of POFs and polymer optical fiber Bragg gratings (POFBGs) quality are discussed. Finally, the influence of annealing on POFBG sensitivity is summarized. Overall, this paper provides a comprehensive overview of annealing techniques and their impact on both POFs and POFBGs. We hope that it will highlight the important progress made in this field.

10.
Appl Opt ; 62(15): 4060-4073, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37706718

RESUMO

With the development of photonic integration technology, meta-waveguides have become a new research hotspot. They have broken through the theoretical diffraction limit by virtue of the strong electromagnetic manipulation ability of the metasurface and the strong electromagnetic field limitation and guidance ability of the waveguide. However, the reported meta-waveguides lack research on dynamic modulation. Therefore, we analyze the modulation effect of the metasurface on the optical field in the waveguide and design an ultra-compact on-chip meta-waveguide phase modulator using split ring magnetic resonance. It has a very short modulation length of only 3.65 µm, wide modulation bandwidth of 116.8 GHz, and low energy consumption of 263.49 fJ/bit. By optimizing the structure, the energy consumption can be further reduced to 90.69 fJ/bit. Meta-waveguides provide a promising method for the design of integrated photonic devices.

11.
Appl Opt ; 62(23): 6205-6211, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37707089

RESUMO

In this paper, a nested micro-ring refractive index sensor based on a subwavelength grating waveguide and the Vernier effect is proposed. In this scheme, the nested micro-ring structure is combined with a subwavelength grating structure to enhance the contact area between the optical field and the analyte, and the wavelength offset is doubled through the Vernier effect. The proposed sensor can effectively increase sensing sensitivity, taking into account the improvement of the free spectral range. This structure enables the device to reach a sensitivity of 8030 nm/RIU near 1550 nm wavelength in a deionized water environment, with a detection limit of 5.659×10-5 RIU and free spectral range of 41.956 nm. The device suggested in this study has a greater reduced footprint than the conventional micro-ring resonant sensor, measuring just 35µm×25µm. Due to its high integration, high sensitivity, and large free spectral range compared to conventional micro-ring resonant sensors, such structures are of great value in biosensing and environmental monitoring.

12.
Opt Lett ; 48(19): 5153-5156, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37773408

RESUMO

The deep application of chiral metasurfaces requires higher flexibility. Herein, we propose a multidimensional tunable chiral graphene metasurface, which uses coherent control to obtain more than 0.8 circular conversion dichroism (CCD) at 2.4 THz as a transmission structure. Its operating frequency can be changed in the 1.3-2.4 THz range, while the amplitude has almost perfect modulation depth in the range of 0-0.8. The mechanism of differential absorption was analyzed through numerical simulation. The device designed is easy to obtain reverse CCD, which is used for unit layout and proves its advantages in near-field imaging. Our work has broadened the path for the development of chiral metasurfaces towards higher degrees of freedom.

13.
Opt Express ; 31(13): 22144-22156, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37381295

RESUMO

Aiming at the problems of narrow working bandwidth, low efficiency, and complex structure of existing terahertz chiral absorption, we propose a chiral metamirror composed of C-shaped metal split ring and L-shaped vanadium dioxide (VO2). This chiral metamirror is composed of three layers of structure, a gold substrate at the bottom, the first polyethylene cyclic olefin copolymer (Topas) dielectric layer and VO2-metal hybrid structure as the top. Our theoretical results led us to show that this chiral metamirror has a circular dichroism (CD) value greater than 0.9 at 5.70 to 8.55 THz and has a maximum value of 0.942 at f = 7.18 THz. In addition, by adjusting the conductivity of VO2, the CD value can be continuously adjustable from 0 to 0.942, which means that the proposed chiral metamirror supports the free switching of the CD response between the on and off states, and the CD modulation depth exceeds 0.99 in the range of 3 to 10 THz. Moreover, we discuss the influence of structural parameters and the change of incident angle on the performance of the metamirror. Finally, we believe that the proposed chiral metamirror has important reference value in the terahertz range for constructing chiral light detectors, CD metamirrors, switchable chiral absorbers and spin-related systems. This work will provide a new idea for improving the terahertz chiral metamirror operating bandwidth and promote the development of terahertz broadband tunable chiral optical devices.

14.
Appl Opt ; 62(7): 1730-1737, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37132919

RESUMO

Circular dichroism has promising applications in biology, molecular chemistry, and other fields. The key to obtaining strong circular dichroism is to introduce symmetry breaking into the structure, which leads to a great difference in the response to different circularly polarized waves. Here, we propose a metasurface structure based on three circular arcs, which produces strong circular dichroism. The metasurface structure combines the split ring with the three circular arcs and increases the structural asymmetry by changing the relative torsional angle. The causes of the strong circular dichroism are analyzed in this paper, and the influence of metasurface parameters on it is discussed. According to the simulation data, the response of the proposed metasurface to different circularly polarized waves varies greatly, with absorption of up to 0.99 at 5.095 THz for a left-handed circularly polarized wave and a maximum circular dichroism of over 0.93. In addition, the incorporation of the phase change material vanadium dioxide on the structure allows flexible modulation of circular dichroism and modulation depths of up to 98.6%. The change of angle within a certain range has little effect on the structural performance. We believe that this flexible and angle robust chiral metasurface structure is suitable for complex reality, and large modulation depth is more practical.

15.
Opt Express ; 31(1): 381-395, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36606974

RESUMO

Aiming at the problems of low efficiency, single function and complex structure of the existing dichroic metamirrors, the actively tunable linear and circular dichroic metamirrors based on single-layer graphene are proposed in this study. The designed metamirrors are mainly composed of the ion-gel, patterned graphene, polyimide, polysilicon and gold substrates. The anisotropy of the achiral structures can be used to realize circular dichroism (0.8) and linear dichroism (0.9) in two directions at the same time without functional switching. Additionally, the incidence angle of electromagnetic waves, rather than the structural chirality, is used to create the exceptionally strong dichroism. The proposed metamirrors not only increase the integration, but also reduce the angular dispersion and complexity of the structure. What's more, by changing the Fermi level of graphene, the CD function of the metamirrors can be tuned in the range of 0 - 0.8, and the LD function can be tuned in the range of 0.22 - 0.9. The designed metamirrors can achieve dual functions under a wide range of incident angles, and can be widely used in various fields such as terahertz imaging, biological detection, optical sensing, and spectrometry.

16.
Biosensors (Basel) ; 12(10)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36291019

RESUMO

Integrated sensors and transmitters of a wide variety of human physiological indicators have recently emerged in the form of multimaterial optical fibers. The methods utilized in the manufacture of optical fibers facilitate the use of a wide range of functional elements in microscale optical fibers with an extensive variety of structures. This article presents an overview and review of semiconductor multimaterial optical fibers, their fabrication and postprocessing techniques, different geometries, and integration in devices that can be further utilized in biomedical applications. Semiconductor optical fiber sensors and fiber lasers for body temperature regulation, in vivo detection, volatile organic compound detection, and medical surgery will be discussed.


Assuntos
Fibras Ópticas , Compostos Orgânicos Voláteis , Humanos , Semicondutores , Lasers
17.
Sensors (Basel) ; 22(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35957275

RESUMO

In this paper, a high sensitivity fiber temperature sensor based on surface plasmon resonance is designed and studied. In the simulation, the single mode fiber is polished to remove most of the cladding, and then gold and silver films are added. Finally, it is embedded in the heat shrinkable tube filled with a thermo-optic coefficient liquid for curing. The numerical simulation results show that the sensing characteristics are sensitive to the remaining cladding thickness of the fiber, the thickness of the gold film and the thickness of the silver film. When the thermo-optic coefficient of the filling liquid is -2.8 × 10-4/°C, the thickness of the gold film, the thickness of the silver film and the thickness of the remaining cladding of the fiber are 30 nm, 20 nm and 1 µm, respectively. The sensitivity of the sensor designed in this paper can reach -6 nm/°C; this result is slightly higher than that of similar research in recent years. It will have a promising application prospect in flexible wearable temperature sensors, smart cities and other fields.

18.
Sensors (Basel) ; 22(16)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36015998

RESUMO

In this work, a simple side-polish plastic optical fiber (POF)-based surface plasmon resonance (SPR) sensor is proposed and demonstrated for simultaneous measurement of refractive index (RI) and liquid level. The effects of side-polish depths on the sensing performance were studied. The experimental results show that the SPR peak wavelength will be changed as the RI changes, and the SPR peak intensity will be changed with the liquid level variation. By monitoring the changes in peak wavelength and intensity, the RI and liquid level can be detected simultaneously. Experimental results show that an RI sensitivity of 2008.58 nm/RIU can be reached at an RI of 1.39. This sensor has the advantages of simple structure and low cost, which has a good prospect in the field of biochemical sensing.


Assuntos
Refratometria , Ressonância de Plasmônio de Superfície , Fibras Ópticas , Plásticos , Polônia , Ressonância de Plasmônio de Superfície/métodos
19.
Appl Opt ; 61(32): 9583-9589, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36606895

RESUMO

The temperature of the environment directly affects the accuracy of refractive index (RI) measurement. Therefore, we propose a double-sided polished surface plasmon resonance (SPR) RI fiber sensor, which is available for simultaneous measurement of the RI and temperature in real time. The proposed sensor uses single-mode fiber as a special double-sided polishing structure. The double-sided polishing regions are coated with a gold-silver hybrid film; one side is additionally coated with graphene layers to increase detection sensitivity, and the other side is coated with polydimethylsiloxane on the metal layer for temperature sensing. The simulation result shows that in the range from 1.33 to 1.35, RI sensitivity reaches as high as 2600 nm/RIU. In the range from 15°C to 85°C, temperature sensitivity reaches as high as -3.5n m/∘ C. The full width at half maximum is 65 nm. Compared with previous studies, the sensitivity is slightly improved, and an excellent temperature compensation effect can be achieved. It is suitable for high-precision measurement of the environment and biochemical aspects.

20.
Opt Express ; 29(16): 25894-25902, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34614908

RESUMO

Plasmonic metallic nanostructures with anisotropic design have unusual polarization-selective characteristic which can be utilized to build nanopolarizers at the nanoscale. Herein, we propose a dual-color image display platform by reconfiguring two types of silver nanoblocks in a single-celled metasurface. Governed by Malus's law, the two types of silver nanoblocks both acting as nanopolarizers with different orientations can continuously modulate the intensity of incident linearly polarized red and green light pixel-by-pixel, respectively. As a result, an ultra-compact, high-resolution, and continuous-greyscale dual-color image can be recorded right at the surface of the meta-device. We demonstrate the dual-color Malus metasurface by successfully encoding and decoding a red-green continuously-grayscale image into a metasurface sample. The experimentally captured meta-image with high-fidelity and resolution as high as 63500 dots per inch (dpi) has verified our proposal. With the advantages such as continuous grayscale modulation, ultrathin, high stability and high density, the proposed dual-color encoded metasurfaces can be readily used in ultra-compact image displays, high-end anti-counterfeiting, high-density optical information storage and information encryption, etc.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...