Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(13)2021 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-34283143

RESUMO

Freehand exercises help improve physical fitness without any requirements for devices or places. Existing fitness assistant systems are typically restricted to wearable devices or exercising at specific positions, compromising the ubiquitous availability of freehand exercises. In this paper, we develop MobiFit, a contactless freehand exercise assistant using just one cellular signal receiver placed on the ground. MobiFit passively monitors the ubiquitous cellular signals sent by the base station, which frees users from the space constraints and deployment overheads and provides accurate repetition counting, exercise type recognition and workout quality assessment without any attachments to the human body. The design of MobiFit faces new challenges of the uncertainties not only on cellular signal payloads but also on signal propagations because the sender (base station) is beyond the control of MobiFit and located far away. To tackle these challenges, we conducted experimental studies to observe the received cellular signal sequence during freehand exercises. Based on the observations, we constructed the analytic model of the received signals. Guided by the insights derived from the analytic model, MobiFit segments out every repetition and rest interval from one exercise session through spectrogram analysis and extracts low-frequency features from each repetition for type recognition. Extensive experiments were conducted in both indoor and outdoor environments, which collected 22,960 exercise repetitions performed by ten volunteers over six months. The results confirm that MobiFit achieves high counting accuracy of 98.6%, high recognition accuracy of 94.1% and low repetition duration estimation error within 0.3 s. Besides, the experiments show that MobiFit works both indoors and outdoors and supports multiple users exercising together.


Assuntos
Exercício Físico , Dispositivos Eletrônicos Vestíveis , Terapia por Exercício , Humanos , Monitorização Fisiológica , Descanso
2.
Sensors (Basel) ; 20(4)2020 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-32098392

RESUMO

Wireless networks have been widely deployed with a high demand for wireless data traffic. The ubiquitous availability of wireless signals brings new opportunities for non-intrusive human activity sensing. To enhance a thorough understanding of existing wireless sensing techniques and provide insights for future directions, this survey conducts a review of the existing research on human activity sensing with wireless signals. We review and compare existing research of wireless human activity sensing from seven perspectives, including the types of wireless signals, theoretical models, signal preprocessing techniques, activity segmentation, feature extraction, classification, and application. With the development and deployment of new wireless technology, there will be more sensing opportunities in human activities. Based on the analysis of existing research, the survey points out seven challenges on wireless human activity sensing research: robustness, non-coexistence of sensing and communications, privacy, multiple user activity sensing, limited sensing range, complex deep learning, and lack of standard datasets. Finally, this survey presents four possible future research trends, including new theoretical models, the coexistence of sensing and communications, awareness of sensing on receivers, and constructing open datasets to enable new wireless sensing opportunities on human activities.


Assuntos
Tecnologia de Sensoriamento Remoto/métodos , Tecnologia sem Fio , Redes de Comunicação de Computadores , Atividades Humanas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...