Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 84(9): 1410-1425, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38335304

RESUMO

Cancer immunotherapy has revolutionized the treatment of lung adenocarcinoma (LUAD); however, a significant proportion of patients do not respond. Recent transcriptomic studies to understand determinants of immunotherapy response have pinpointed stromal-mediated resistance mechanisms. To gain a better understanding of stromal biology at the cellular and molecular level in LUAD, we performed single-cell RNA sequencing of 256,379 cells, including 13,857 mesenchymal cells, from 9 treatment-naïve patients. Among the mesenchymal cell subsets, FAP+PDPN+ cancer-associated fibroblasts (CAF) and ACTA2+MCAM+ pericytes were enriched in tumors and differentiated from lung-resident fibroblasts. Imaging mass cytometry revealed that both subsets were topographically adjacent to the perivascular niche and had close spatial interactions with endothelial cells (EC). Modeling of ligand and receptor interactomes between mesenchymal and ECs identified that NOTCH signaling drives these cell-to-cell interactions in tumors, with pericytes and CAFs as the signal receivers and arterial and PLVAPhigh immature neovascular ECs as the signal senders. Either pharmacologically blocking NOTCH signaling or genetically depleting NOTCH3 levels in mesenchymal cells significantly reduced collagen production and suppressed cell invasion. Bulk RNA sequencing data demonstrated that NOTCH3 expression correlated with poor survival in stroma-rich patients and that a T cell-inflamed gene signature only predicted survival in patients with low NOTCH3. Collectively, this study provides valuable insights into the role of NOTCH3 in regulating tumor stroma biology, warranting further studies to elucidate the clinical implications of targeting NOTCH3 signaling. SIGNIFICANCE: NOTCH3 signaling activates tumor-associated mesenchymal cells, increases collagen production, and augments cell invasion in lung adenocarcinoma, suggesting its critical role in remodeling tumor stroma.


Assuntos
Adenocarcinoma de Pulmão , Fibroblastos Associados a Câncer , Neoplasias Pulmonares , Invasividade Neoplásica , Receptor Notch3 , Análise de Célula Única , Células Estromais , Microambiente Tumoral , Humanos , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/genética , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Comunicação Celular , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Receptor Notch3/metabolismo , Receptor Notch3/genética , Transdução de Sinais , Células Estromais/metabolismo , Células Estromais/patologia
2.
EMBO Mol Med ; 16(3): 641-663, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38332201

RESUMO

Communications between immune cells are essential to ensure appropriate coordination of their activities. Here, we observed the infiltration of activated macrophages into the joint-footpads of chikungunya virus (CHIKV)-infected animals. Large numbers of CD64+MHCII+ and CD64+MHCII- macrophages were present in the joint-footpad, preceded by the recruitment of their CD11b+Ly6C+ inflammatory monocyte precursors. Recruitment and differentiation of these myeloid subsets were dependent on CD4+ T cells and GM-CSF. Transcriptomic and gene ontology analyses of CD64+MHCII+ and CD64+MHCII- macrophages revealed 89 differentially expressed genes, including genes involved in T cell proliferation and differentiation pathways. Depletion of phagocytes, including CD64+MHCII+ macrophages, from CHIKV-infected mice reduced disease pathology, demonstrating that these cells play a pro-inflammatory role in CHIKV infection. Together, these results highlight the synergistic dynamics of immune cell crosstalk in driving CHIKV immunopathogenesis. This study provides new insights in the disease mechanism and offers opportunities for development of novel anti-CHIKV therapeutics.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Animais , Camundongos , Linfócitos T/metabolismo , Vírus Chikungunya/genética , Macrófagos , Linfócitos T CD4-Positivos
3.
Biomaterials ; 305: 122460, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246018

RESUMO

Ex vivo patient-derived tumor slices (PDTS) are currently limited by short-term viability in culture. Here, we show how bioengineered hydrogels enable the identification of key matrix parameters that significantly enhance PDTS viability compared to conventional culture systems. As demonstrated using single-cell RNA sequencing and high-dimensional flow cytometry, hydrogel-embedded PDTS tightly preserved cancer, cancer-associated fibroblast, and various immune cell populations and subpopulations in the corresponding original tumor. Cell-cell communication networks within the tumor microenvironment, including immune checkpoint ligand-receptor interactions, were also maintained. Remarkably, our results from a co-clinical trial suggest hydrogel-embedded PDTS may predict sensitivity to immune checkpoint inhibitors (ICIs) in head and neck cancer patients. Further, we show how these longer term-cultured tumor explants uniquely enable the sampling and detection of temporal evolution in molecular readouts when treated with ICIs. By preserving the compositional heterogeneity and complexity of patient tumors, hydrogel-embedded PDTS provide a valuable tool to facilitate experiments targeting the tumor microenvironment.


Assuntos
Neoplasias de Cabeça e Pescoço , Hidrogéis , Humanos , Hidrogéis/farmacologia , Avaliação de Medicamentos , Microambiente Tumoral
4.
Sci Immunol ; 7(78): eadd3330, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36525505

RESUMO

Langerhans cell histiocytosis (LCH) is a potentially fatal neoplasm characterized by the aberrant differentiation of mononuclear phagocytes, driven by mitogen-activated protein kinase (MAPK) pathway activation. LCH cells may trigger destructive pathology yet remain in a precarious state finely balanced between apoptosis and survival, supported by a unique inflammatory milieu. The interactions that maintain this state are not well known and may offer targets for intervention. Here, we used single-cell RNA-seq and protein analysis to dissect LCH lesions, assessing LCH cell heterogeneity and comparing LCH cells with normal mononuclear phagocytes within lesions. We found LCH discriminatory signatures pointing to senescence and escape from tumor immune surveillance. We also uncovered two major lineages of LCH with DC2- and DC3/monocyte-like phenotypes and validated them in multiple pathological tissue sites by high-content imaging. Receptor-ligand analyses and lineage tracing in vitro revealed Notch-dependent cooperativity between DC2 and DC3/monocyte lineages during expression of the pathognomonic LCH program. Our results present a convergent dual origin model of LCH with MAPK pathway activation occurring before fate commitment to DC2 and DC3/monocyte lineages and Notch-dependent cooperativity between lineages driving the development of LCH cells.


Assuntos
Histiocitose de Células de Langerhans , Neoplasias , Humanos , Linhagem da Célula , Histiocitose de Células de Langerhans/metabolismo , Histiocitose de Células de Langerhans/patologia , Diferenciação Celular , Monócitos/metabolismo
5.
Front Immunol ; 12: 710217, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867943

RESUMO

Severe SARS-CoV-2 infection can trigger uncontrolled innate and adaptive immune responses, which are commonly associated with lymphopenia and increased neutrophil counts. However, whether the immune abnormalities observed in mild to severely infected patients persist into convalescence remains unclear. Herein, comparisons were drawn between the immune responses of COVID-19 infected and convalescent adults. Strikingly, survivors of severe COVID-19 had decreased proportions of NKT and Vδ2 T cells, and increased proportions of low-density neutrophils, IgA+/CD86+/CD123+ non-classical monocytes and hyperactivated HLADR+CD38+ CD8+ T cells, and elevated levels of pro-inflammatory cytokines such as hepatocyte growth factor and vascular endothelial growth factor A, long after virus clearance. Our study suggests potential immune correlates of "long COVID-19", and defines key cells and cytokines that delineate true and quasi-convalescent states.


Assuntos
COVID-19/imunologia , SARS-CoV-2/imunologia , Adulto , Idoso , COVID-19/complicações , Estudos de Coortes , Convalescença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Síndrome de COVID-19 Pós-Aguda
6.
Front Cell Infect Microbiol ; 11: 743735, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34881192

RESUMO

Serial passaging of the human fungal pathogen Candida albicans in the gastrointestinal tract of antibiotics-treated mice selects for virulence-attenuated strains. These gut-evolved strains protect the host from infection by a wide range of pathogens via trained immunity. Here, we further investigated the molecular and cellular mechanisms underlying this innate immune memory. Both Dectin-1 (the main receptor for ß-glucan; a well-described immune training molecule in the fungal cell wall) and Nod2 (a receptor described to mediate BCG-induced trained immunity), were redundant for the protection induced by gut-evolved C. albicans against a virulent C. albicans strain, suggesting that gut-evolved C. albicans strains induce trained immunity via other pathways. Cytometry by time of flight (CyTOF) analysis of mouse splenocytes revealed that immunization with gut-evolved C. albicans resulted in an expansion of neutrophils and a reduction in natural killer (NK) cells, but no significant numeric changes in monocytes, macrophages or dendritic cell populations. Systemic depletion of phagocytes or neutrophils, but not of macrophages or NK cells, reduced protection mediated by gut-evolved C. albicans. Splenocytes and bone marrow cells of mice immunized with gut-evolved C. albicans demonstrated metabolic changes. In particular, splenic neutrophils displayed significantly elevated glycolytic and respiratory activity in comparison to those from mock-immunized mice. Although further investigation is required for fully deciphering the trained immunity mechanism induced by gut-evolved C. albicans strains, this data is consistent with the existence of several mechanisms of trained immunity, triggered by different training stimuli and involving different immune molecules and cell types.


Assuntos
Candida albicans , beta-Glucanas , Animais , Parede Celular , Macrófagos , Camundongos , Neutrófilos
8.
Front Immunol ; 10: 1761, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31402918

RESUMO

Human primary monocytes are heterogeneous in terms of phenotype and function, but are sub-divided only based on CD16 and CD14 expression. CD16 expression distinguishes a subset of monocytes with highly pro-inflammatory properties from non-CD16 expressing "classical" monocytes. CD14 expression further subdivides the CD16+ monocytes into non-classical CD14low and intermediate CD14high subsets. This long-standing CD16-CD14 classification system, however, has limitations as CD14 is expressed in a continuum, leading to subjectivity in delineating the non-classical and intermediate subsets; in addition, CD16 expression is unstable, making identification of the subsets impossible after in vitro culture or during inflammatory conditions in vivo. Hence, we aimed to identify the three monocyte subsets using an alternative combination of markers. Additionally, we wanted to address whether the monocyte subset perturbations observed during infection is real or an artifact of differential CD16 and/or CD14 regulation. Using cytometry by time-of-flight (CyTOF), we studied the simultaneous expression of 34 monocyte markers on total monocytes, and derived a combination of five markers (CD33, CD86, CD64, HLA-DR, and CCR2), that could objectively delineate the three subsets. Using these markers, we could also distinguish CD16+ monocytes from CD16- monocytes after in vitro stimulation. Finally, we found that the observed expansion of intermediate (CD14high) monocytes in dengue virus-infected patients was due to up-regulated CD16 expression on classical monocytes. With our new combination of markers, we can now identify monocyte subsets without CD16 and CD14, and accurately re-examine monocyte subset perturbations in diseases.


Assuntos
Biomarcadores , Plasticidade Celular , Receptores de Lipopolissacarídeos/metabolismo , Monócitos/metabolismo , Receptores de IgG/metabolismo , Humanos , Imunofenotipagem , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Monócitos/imunologia
9.
Nat Immunol ; 20(4): 514, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30862955

RESUMO

In the version of this article initially published, the first affiliation lacked 'MRC'; the correct name of the institution is 'MRC Weatherall Institute of Molecular Medicine'. Two designations (SP110Y and ST110H) were incorrect in the legend to Fig. 6f,h,i. The correct text is as follows: for panel f, "...loaded with either the CdtB(105-125)SP110Y (DRB4*SP110Y) or the CdtB(105-125)ST110H (DRB4*ST110H) peptide variants..."; for panel h, "...decorated by the DRB4*SP110Y tetramer (lower-right quadrant), the DRB4*ST110H (upper-left quadrant)..."; and for panel i, "...stained ex vivo with DRB4*SP110Y, DRB4*ST110H...". In Fig. 8e, the final six residues (LTEAFF) of the sequence in the far right column of the third row of the table were missing; the correct sequence is 'CASSYRRTPPLTEAFF'. In the legend to Fig. 8d, a designation (HLyE) was incorrect; the correct text is as follows: "(HlyE?)." Portions of the Acknowledgements section were incorrect; the correct text is as follows: "This work was supported by the UK Medical Research Council (MRC) (MR/K021222/1) (G.N., M.A.G., A.S., V.C., A.J.P.),...the Oxford Biomedical Research Centre (A.J.P., V.C.),...and core funding from the Singapore Immunology Network (SIgN) (E.W.N.) and the SIgN immunomonitoring platform (E.W.N.)." Finally, a parenthetical element was phrased incorrectly in the final paragraph of the Methods subsection "T cell cloning and live fluorescence barcoding"; the correct phrasing is as follows: "...(which in all cases included HlyE, CdtB, Ty21a, Quailes, NVGH308, and LT2 strains and in volunteers T5 and T6 included PhoN)...". Also, in Figs. 3c and 4a, the right outlines of the plots were not visible; in the legend to Fig. 3, panel letter 'f' was not bold; and in Fig. 8f, 'ND' should be aligned directly beneath DRB4 in the key and 'ND' should be removed from the diagram at right, and the legend should be revised accordingly as follows: "...colors indicate the HLA class II restriction (gray indicates clones for which restriction was not determined (ND)). Clonotypes are grouped on the basis of pathogen selectivity (continuous line), protein specificity (dashed line) and epitope specificity; for ten HlyE-specific clones (pixilated squares), the epitope specificity was not determined...". The errors have been corrected in the HTML and PDF versions of the article.

10.
J Infect Dis ; 220(1): 139-150, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-30753544

RESUMO

BACKGROUND: Metformin, the most widely administered diabetes drug, has been proposed as a candidate adjunctive host-directed therapy for tuberculosis, but little is known about its effects on human host responses to Mycobacterium tuberculosis. METHODS: We investigated in vitro and in vivo effects of metformin in humans. RESULTS: Metformin added to peripheral blood mononuclear cells from healthy volunteers enhanced in vitro cellular metabolism while inhibiting the mammalian target of rapamycin targets p70S6K and 4EBP1, with decreased cytokine production and cellular proliferation and increased phagocytosis activity. Metformin administered to healthy human volunteers led to significant downregulation of genes involved in oxidative phosphorylation, mammalian target of rapamycin signaling, and type I interferon response pathways, particularly following stimulation with M. tuberculosis, and upregulation of genes involved in phagocytosis and reactive oxygen species production was increased. These in vivo effects were accompanied by a metformin-induced shift in myeloid cells from classical to nonclassical monocytes. At a functional level, metformin lowered ex vivo production of tumor necrosis factor α, interferon γ, and interleukin 1ß but increased phagocytosis activity and reactive oxygen species production. CONCLUSION: Metformin has a range of potentially beneficial effects on cellular metabolism, immune function, and gene transcription involved in innate host responses to M. tuberculosis.


Assuntos
Interações Hospedeiro-Patógeno/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Mycobacterium tuberculosis/patogenicidade , Tuberculose/metabolismo , Tuberculose/microbiologia , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Voluntários Saudáveis , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/microbiologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Células Mieloides/efeitos dos fármacos , Células Mieloides/metabolismo , Fagocitose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
11.
Proc Natl Acad Sci U S A ; 116(2): 609-618, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30587582

RESUMO

Anti-CTLA-4 mAb is efficacious in enhancing tumor immunity in humans. CTLA-4 is expressed by conventional T cells upon activation and by naturally occurring FOXP3+CD4+ Treg cells constitutively, raising a question of how anti-CTLA-4 mAb can differentially control these functionally opposing T cell populations in tumor immunity. Here we show that FOXP3high potently suppressive effector Treg cells were abundant in melanoma tissues, expressing CTLA-4 at higher levels than tumor-infiltrating CD8+ T cells. Upon in vitro tumor-antigen stimulation of peripheral blood mononuclear cells from healthy individuals or melanoma patients, Fc-region-modified anti-CTLA-4 mAb with high antibody-dependent cell-mediated cytotoxicity (ADCC) and cellular phagocytosis (ADCP) activity selectively depleted CTLA-4+FOXP3+ Treg cells and consequently expanded tumor-antigen-specific CD8+T cells. Importantly, the expansion occurred only when antigen stimulation was delayed several days from the antibody treatment to spare CTLA-4+ activated effector CD8+T cells from mAb-mediated killing. Similarly, in tumor-bearing mice, high-ADCC/ADCP anti-CTLA-4 mAb treatment with delayed tumor-antigen vaccination significantly prolonged their survival and markedly elevated cytokine production by tumor-infiltrating CD8+ T cells, whereas antibody treatment concurrent with vaccination did not. Anti-CTLA-4 mAb modified to exhibit a lesser or no Fc-binding activity failed to show such timing-dependent in vitro and in vivo immune enhancement. Thus, high ADCC anti-CTLA-4 mAb is able to selectively deplete effector Treg cells and evoke tumor immunity depending on the CTLA-4-expressing status of effector CD8+ T cells. These findings are instrumental in designing cancer immunotherapy with mAbs targeting the molecules commonly expressed by FOXP3+ Treg cells and tumor-reactive effector T cells.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Antineoplásicos Imunológicos/farmacologia , Linfócitos T CD8-Positivos/imunologia , Antígeno CTLA-4/antagonistas & inibidores , Vacinas Anticâncer/farmacologia , Neoplasias/imunologia , Linfócitos T Reguladores/metabolismo , Animais , Antineoplásicos Imunológicos/imunologia , Antígeno CTLA-4/imunologia , Vacinas Anticâncer/imunologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/patologia
12.
Nat Immunol ; 19(7): 742-754, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29925993

RESUMO

To tackle the complexity of cross-reactive and pathogen-specific T cell responses against related Salmonella serovars, we used mass cytometry, unbiased single-cell cloning, live fluorescence barcoding, and T cell-receptor sequencing to reconstruct the Salmonella-specific repertoire of circulating effector CD4+ T cells, isolated from volunteers challenged with Salmonella enterica serovar Typhi (S. Typhi) or Salmonella Paratyphi A (S. Paratyphi). We describe the expansion of cross-reactive responses against distantly related Salmonella serovars and of clonotypes recognizing immunodominant antigens uniquely expressed by S. Typhi or S. Paratyphi A. In addition, single-amino acid variations in two immunodominant proteins, CdtB and PhoN, lead to the accumulation of T cells that do not cross-react against the different serovars, thus demonstrating how minor sequence variations in a complex microorganism shape the pathogen-specific T cell repertoire. Our results identify immune-dominant, serovar-specific, and cross-reactive T cell antigens, which should aid in the design of T cell-vaccination strategies against Salmonella.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Salmonella paratyphi A/imunologia , Salmonella typhi/imunologia , ADP-Ribosil Ciclase 1/análise , Adulto , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/metabolismo , Linfócitos T CD4-Positivos/química , Células Clonais , Humanos , Fenótipo , Receptores CCR7/análise , Febre Tifoide/imunologia
13.
Nature ; 557(7706): 575-579, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29769722

RESUMO

Various forms of immunotherapy, such as checkpoint blockade immunotherapy, are proving to be effective at restoring T cell-mediated immune responses that can lead to marked and sustained clinical responses, but only in some patients and cancer types1-4. Patients and tumours may respond unpredictably to immunotherapy partly owing to heterogeneity of the immune composition and phenotypic profiles of tumour-infiltrating lymphocytes (TILs) within individual tumours and between patients5,6. Although there is evidence that tumour-mutation-derived neoantigen-specific T cells play a role in tumour control2,4,7-10, in most cases the antigen specificities of phenotypically diverse tumour-infiltrating T cells are largely unknown. Here we show that human lung and colorectal cancer CD8+ TILs can not only be specific for tumour antigens (for example, neoantigens), but also recognize a wide range of epitopes unrelated to cancer (such as those from Epstein-Barr virus, human cytomegalovirus or influenza virus). We found that these bystander CD8+ TILs have diverse phenotypes that overlap with tumour-specific cells, but lack CD39 expression. In colorectal and lung tumours, the absence of CD39 in CD8+ TILs defines populations that lack hallmarks of chronic antigen stimulation at the tumour site, supporting their classification as bystanders. Expression of CD39 varied markedly between patients, with some patients having predominantly CD39- CD8+ TILs. Furthermore, frequencies of CD39 expression among CD8+ TILs correlated with several important clinical parameters, such as the mutation status of lung tumour epidermal growth factor receptors. Our results demonstrate that not all tumour-infiltrating T cells are specific for tumour antigens, and suggest that measuring CD39 expression could be a straightforward way to quantify or isolate bystander T cells.


Assuntos
Efeito Espectador/imunologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Neoplasias Colorretais/imunologia , Neoplasias Pulmonares/imunologia , Linfócitos do Interstício Tumoral/citologia , Linfócitos do Interstício Tumoral/imunologia , Antígenos de Neoplasias/imunologia , Antígenos Virais/imunologia , Apirase/análise , Apirase/deficiência , Apirase/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Separação Celular , Neoplasias Colorretais/genética , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/genética , Linfócitos do Interstício Tumoral/metabolismo , Fenótipo
14.
Eur J Immunol ; 48(6): 1014-1019, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29510451

RESUMO

Pressure ulcers are a chronic problem for patients or the elderly who require extended periods of bed rest. The formation of ulcers is due to repeated cycles of ischemia-reperfusion (IR), which initiates an inflammatory response. Advanced ulcers disrupt the skin barrier, resulting in further complications. To date, the immunological aspect of skin IR has been understudied, partly due to the complexity of the skin immune cells. Through a combination of mass cytometry, confocal imaging and intravital multiphoton imaging, this study establishes a workflow for multidimensionality single cell analysis of skin myeloid cell responses in the context of IR injury with high spatiotemporal resolution. The data generated has provided us with previously uncharacterized insights into the distinct cellular behavior of resident dendritic cells (DCs) and recruited neutrophils post IR. Of interest, we observed a drop in DDC numbers in the IR region, which was subsequently replenished 48h post IR. More importantly, in these cells, we observe an attenuated response to repeated injuries, which may have implications in the subsequent wound healing process.


Assuntos
Células Dendríticas/imunologia , Neutrófilos/imunologia , Úlcera por Pressão/imunologia , Traumatismo por Reperfusão/imunologia , Pele/patologia , Idoso , Animais , Antígeno CD11c/genética , Antígeno CD11c/metabolismo , Movimento Celular , Células Cultivadas , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Análise de Célula Única
15.
Immunity ; 48(2): 364-379.e8, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29466759

RESUMO

Neutrophils are specialized innate cells that require constant replenishment from proliferative bone marrow (BM) precursors as a result of their short half-life. Although it is established that neutrophils are derived from the granulocyte-macrophage progenitor (GMP), the differentiation pathways from GMP to functional mature neutrophils are poorly defined. Using mass cytometry (CyTOF) and cell-cycle-based analysis, we identified three neutrophil subsets within the BM: a committed proliferative neutrophil precursor (preNeu) which differentiates into non-proliferating immature neutrophils and mature neutrophils. Transcriptomic profiling and functional analysis revealed that preNeu require the C/EBPε transcription factor for their generation from the GMP, and their proliferative program is substituted by a gain of migratory and effector function as they mature. preNeus expand under microbial and tumoral stress, and immature neutrophils are recruited to the periphery of tumor-bearing mice. In summary, our study identifies specialized BM granulocytic populations that ensure supply under homeostasis and stress responses.


Assuntos
Células da Medula Óssea/fisiologia , Neutrófilos/fisiologia , Animais , Células da Medula Óssea/imunologia , Proteínas Estimuladoras de Ligação a CCAAT/fisiologia , Linhagem da Célula , Movimento Celular , Proliferação de Células , Células Cultivadas , Perfilação da Expressão Gênica , Humanos , Camundongos , Neoplasias Experimentais/imunologia , Neutrófilos/imunologia
16.
Nat Commun ; 9(1): 253, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29343684

RESUMO

Mucosal-associated invariant T (MAIT) cells are innate-like T cells that can detect bacteria-derived metabolites presented on MR1. Here we show, using a controlled infection of humans with live Salmonella enterica serovar Paratyphi A, that MAIT cells are activated during infection, an effect maintained even after antibiotic treatment. At the peak of infection MAIT cell T-cell receptor (TCR)ß clonotypes that are over-represented prior to infection transiently contract. Select MAIT cell TCRß clonotypes that expand after infection have stronger TCR-dependent activation than do contracted clonotypes. Our results demonstrate that host exposure to antigen may drive clonal expansion of MAIT cells with increased functional avidity, suggesting a role for specific vaccination strategies to increase the frequency and potency of MAIT cells to optimize effector function.


Assuntos
Proliferação de Células , Células T Invariantes Associadas à Mucosa/imunologia , Febre Paratifoide/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Salmonella paratyphi A/imunologia , Adolescente , Adulto , Linhagem Celular Tumoral , Células Clonais/imunologia , Células Clonais/metabolismo , Células Clonais/microbiologia , Voluntários Saudáveis , Interações Hospedeiro-Patógeno/imunologia , Humanos , Células Jurkat , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/microbiologia , Pessoa de Meia-Idade , Células T Invariantes Associadas à Mucosa/metabolismo , Células T Invariantes Associadas à Mucosa/microbiologia , Febre Paratifoide/metabolismo , Febre Paratifoide/microbiologia , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Salmonella paratyphi A/fisiologia , Adulto Jovem
17.
Sci Immunol ; 2(9)2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28707004

RESUMO

Mycobacterium tuberculosis (Mtb) executes a plethora of immune-evasive mechanisms, which contribute to its pathogenesis, limited efficacy of current therapy, and the emergence of drug-resistant strains. This has led to resurgence in attempts to develop new therapeutic strategies/targets against tuberculosis (TB). We show that Mtb down-regulates sirtuin 1 (SIRT1), a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase, in monocytes/macrophages, TB animal models, and TB patients with active disease. Activation of SIRT1 reduced intracellular growth of drug-susceptible and drug-resistant strains of Mtb and induced phagosome-lysosome fusion and autophagy in a SIRT1-dependent manner. SIRT1 activation dampened Mtb-mediated persistent inflammatory responses via deacetylation of RelA/p65, leading to impaired binding of RelA/p65 on the promoter of inflammatory genes. In Mtb-infected mice, the use of SIRT1 activators ameliorated lung pathology, reduced chronic inflammation, and enhanced efficacy of anti-TB drug. Mass cytometry-based high-dimensional analysis revealed that SIRT1 activation mediated modulation of lung myeloid cells in Mtb-infected mice. Myeloid cell-specific SIRT1 knockout mice display increased inflammatory responses and susceptibility to Mtb infection. Collectively, these results provide a link between SIRT1 activation and TB pathogenesis and indicate a potential of SIRT1 activators in designing an effective and clinically relevant host-directed therapies for TB.

18.
J Immunol ; 198(2): 927-936, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27986910

RESUMO

The identification of blood-borne biomarkers correlating with melanoma patient survival remains elusive. Novel techniques such as mass cytometry could help to identify melanoma biomarkers, allowing simultaneous detection of up to 100 parameters. However, the evaluation of multiparametric data generated via time-of-flight mass cytometry requires novel analytical techniques because the application of conventional gating strategies currently used in polychromatic flow cytometry is not feasible. In this study, we have employed 38-channel time-of-flight mass cytometry analysis to generate comprehensive immune cell signatures using matrix boolean analysis in a cohort of 28 stage IV melanoma patients and 17 controls. Clusters of parameters were constructed from the abundance of cellular phenotypes significantly different between patients and controls. This approach identified patient-specific combinatorial immune signatures consisting of high-resolution subsets of the T cell, NK cell, B cell, and myeloid compartments. An association with superior survival was characterized by a balanced distribution of myeloid-derived suppressor cell-like and APC-like myeloid phenotypes and differentiated NK cells. The results of this study in a discovery cohort of melanoma patients suggest that multifactorial immune signatures have the potential to allow more accurate prediction of individual patient outcome. Further investigation of the identified immune signatures in a validation cohort is now warranted.


Assuntos
Biomarcadores Tumorais/sangue , Citometria de Fluxo/métodos , Melanoma/imunologia , Melanoma/patologia , Adulto , Idoso , Biomarcadores Tumorais/imunologia , Análise por Conglomerados , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Melanoma/mortalidade , Pessoa de Meia-Idade
19.
Cytometry A ; 91(1): 48-61, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27798817

RESUMO

The advent of mass cytometry has facilitated highly multi-parametric single-cell analysis allowing for the deep assessment of cellular diversity. While the data and analytical power of this approach are well described, associated technical and experimental hurdles remain. Issues like equipment breakdown and sampling of large-scale batches, which may require multiple days of data acquisition, are minor but critical obstacles that prompt a technical solution, especially when dealing with precious samples. An ability to cryopreserve mass cytometry samples that have already been stained would alleviate numerous technical limitations we face with currently used sample-handling approaches. Here, we evaluated two protocols for freezing of already-stained and fixed cellular samples and compared them with standard sample refrigeration in staining buffer. A comprehensive human T cell staining phenotypic and functional profiling panel was used and the signal intensity and reliability of each marker was assessed over a 4-week period. In general, cellular viability, DNA Ir-Intercalator and barcode staining were minimally affected by freezing compared to refrigeration, and the signal intensities for cell surface markers and receptors were not compromised. Intracellular cytokine staining did show some decreases in signal intensity after freezing, with the decreases more prominent in a methanol-based protocol compared to a protocol involving the use of 10% DMSO in FBS. We conclude that freezing already-stained samples suspended in 10% DMSO in FBS is practical and efficient way to preserve already-stained samples when needed. © 2016 International Society for Advancement of Cytometry.


Assuntos
Criopreservação/métodos , Citometria de Fluxo/métodos , Análise de Célula Única/métodos , Sobrevivência Celular/genética , Humanos , Coloração e Rotulagem , Linfócitos T/ultraestrutura
20.
Immunity ; 45(2): 442-56, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27521270

RESUMO

Depending on the tissue microenvironment, T cells can differentiate into highly diverse subsets expressing unique trafficking receptors and cytokines. Studies of human lymphocytes have primarily focused on a limited number of parameters in blood, representing an incomplete view of the human immune system. Here, we have utilized mass cytometry to simultaneously analyze T cell trafficking and functional markers across eight different human tissues, including blood, lymphoid, and non-lymphoid tissues. These data have revealed that combinatorial expression of trafficking receptors and cytokines better defines tissue specificity. Notably, we identified numerous T helper cell subsets with overlapping cytokine expression, but only specific cytokine combinations are secreted regardless of tissue type. This indicates that T cell lineages defined in mouse models cannot be clearly distinguished in humans. Overall, our data uncover a plethora of tissue immune signatures and provide a systemic map of how T cell phenotypes are altered throughout the human body.


Assuntos
Sangue/imunologia , Movimento Celular , Tecido Linfoide/imunologia , Espectrometria de Massas/métodos , Especificidade de Órgãos , Subpopulações de Linfócitos T/imunologia , Linfócitos T Auxiliares-Indutores/fisiologia , Animais , Biodiversidade , Biomarcadores/metabolismo , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Citocinas/metabolismo , Humanos , Ativação Linfocitária , Camundongos , Receptores de Retorno de Linfócitos/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...