Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pediatr Res ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844539

RESUMO

BACKGROUND: Persistent Pulmonary Hypertension of the Newborn (PPHN) is characterized by elevated pulmonary vascular resistance (PVR), resulting in hypoxemia. Impaired angiogenesis contributes to high PVR. Pulmonary artery endothelial cells (PAECs) in PPHN exhibit decreased mitochondrial respiration and angiogenesis. We hypothesize that Peroxisome Proliferator-Activated Receptor Gamma Co-Activator-1α (PGC-1α) downregulation leads to reduced mitochondrial function and angiogenesis in PPHN. METHODS: Studies were performed in PAECs isolated from fetal lambs with PPHN induced by ductus arteriosus constriction, with gestation-matched controls and in normal human umbilical vein endothelial cells (HUVECs). PGC-1α was knocked downed in control lamb PAECs and HUVECs and overexpressed in PPHN PAECs to investigate the effects on mitochondrial function and angiogenesis. RESULTS: PPHN PAECs had decreased PGC-1α expression compared to controls. PGC-1α knockdown in HUVECs led to reduced Nuclear Respiratory Factor-1 (NRF-1), Transcription Factor-A of Mitochondria (TFAM), and mitochondrial electron transport chain (ETC) complexes expression. PGC-1α knockdown in control PAECs led to decreased in vitro capillary tube formation, cell migration, and proliferation. PGC-1α upregulation in PPHN PAECs led to increased ETC complexes expression and improved tube formation, cell migration, and proliferation. CONCLUSION: PGC-1α downregulation contributes to reduced mitochondrial oxidative phosphorylation through control of the ETC complexes, thereby affecting angiogenesis in PPHN. IMPACT: Reveals a novel mechanism for angiogenesis dysfunction in persistent pulmonary hypertension of the newborn (PPHN). Identifies a key mitochondrial transcription factor, Peroxisome Proliferator-Activated Receptor Gamma Co-Activator-1α (PGC-1α), as contributing to the altered adaptation and impaired angiogenesis function that characterizes PPHN through its regulation of mitochondrial function and oxidative phosphorylation. May provide translational significance as this mechanism offers a new therapeutic target in PPHN, and efforts to restore PGC-1α expression may improve postnatal transition in PPHN.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38869353

RESUMO

Bronchopulmonary dysplasia (BPD) is characterized by impaired lung alveolar and vascular growth. We investigated the hypothesis that neonatal exposure to hyperoxia leads to persistent BPD phenotype due to decreased expression of liver kinase B1 (LKB1), a key regulator of mitochondrial function. We exposed mouse pups from postnatal day 1- day 10 (P1-P10) to 21% or 75% oxygen. Half of the pups in each group received metformin or saline intraperitoneally from P1-P10. Pups were euthanized at P4 or P10 or recovered in 21% O2 until euthanasia at P21. Lung histology/morphometry, immunofluorescence and immunoblots were done for changes in lung structure and expression of LKB1 and downstream targets, AMPK, PGC-1α, electron transport chain complexes (ETC) and Notch ligands, Jagged 1 and delta like 4 (Dll4). LKB1 signaling and in vitro angiogenesis were assessed in human pulmonary artery endothelial cells (PAEC) exposed to 21% or 95% O2 for 36h. Levels of LKB1, phosphorylated-AMPK (p-AMPK), PGC-1α, and ETC complexes were decreased in lungs at P10 and P21 in hyperoxia. Metformin increased LKB1, p-AMPK, PGC-1α, and ETC complexes at P10 and P21 in hyperoxia pups. Radial alveolar count was decreased and mean linear intercept increased in hyperoxia pups at P10 and P21; these were improved by metformin. Lung capillary density was decreased in hyperoxia at P10 and P21 and was increased by metformin. In vitro angiogenesis was decreased in HPAEC by 95% O2 and was improved by metformin. Decreased LKB1 signaling may contribute to decreased alveolar and vascular growth in a mouse model of BPD.

3.
Free Radic Biol Med ; 215: 112-126, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336101

RESUMO

Murine sickle cell disease (SCD) results in damage to multiple organs, likely mediated first by vasculopathy. While the mechanisms inducing vascular damage remain to be determined, nitric oxide bioavailability and sterile inflammation are both considered to play major roles in vasculopathy. Here, we investigate the effects of high mobility group box-1 (HMGB1), a pro-inflammatory damage-associated molecular pattern (DAMP) molecule on endothelial-dependent vasodilation and lung morphometrics, a structural index of damage in sickle (SS) mice. SS mice were treated with either phosphate-buffered saline (PBS), hE-HMGB1-BP, an hE dual-domain peptide that binds and removes HMGB1 from the circulation via the liver, 1-[4-(aminocarbonyl)-2-methylphenyl]-5-[4-(1H-imidazol-1-yl)phenyl]-1H-pyrrole-2-propanoic acid (N6022) or N-acetyl-lysyltyrosylcysteine amide (KYC) for three weeks. Human umbilical vein endothelial cells (HUVEC) were treated with recombinant HMGB1 (r-HMGB1), which increases S-nitrosoglutathione reductase (GSNOR) expression by ∼80%, demonstrating a direct effect of HMGB1 to increase GSNOR. Treatment of SS mice with hE-HMGB1-BP reduced plasma HMGB1 in SS mice to control levels and reduced GSNOR expression in facialis arteries isolated from SS mice by ∼20%. These changes were associated with improved endothelial-dependent vasodilation. Treatment of SS mice with N6022 also improved vasodilation in SS mice suggesting that targeting GSNOR also improves vasodilation. SCD decreased protein nitrosothiols (SNOs) and radial alveolar counts (RAC) and increased GSNOR expression and mean linear intercepts (MLI) in lungs from SS mice. The marked changes in pulmonary morphometrics and GSNOR expression throughout the lung parenchyma in SS mice were improved by treating with either hE-HMGB1-BP or KYC. These data demonstrate that murine SCD induces vasculopathy and chronic lung disease by an HMGB1- and GSNOR-dependent mechanism and suggest that HMGB1 and GSNOR might be effective therapeutic targets for reducing vasculopathy and chronic lung disease in humans with SCD.


Assuntos
Anemia Falciforme , Benzamidas , Proteína HMGB1 , Pneumopatias , Lesão Pulmonar , Pirróis , Doenças Vasculares , Humanos , Animais , Camundongos , Lesão Pulmonar/etiologia , Proteína HMGB1/genética , Células Endoteliais/metabolismo , Anemia Falciforme/tratamento farmacológico , Anemia Falciforme/genética , Inflamação , Doenças Vasculares/etiologia
4.
Am J Med Genet A ; 194(4): e63489, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38058249

RESUMO

Chronic diarrhea presents a significant challenge for managing nutritional and electrolyte deficiencies, especially in children, given the higher stakes of impacting growth and developmental consequence. Congenital secretory diarrhea (CSD) compounds this further, particularly in the case of the activating variants of the guanylate-cyclase 2C (GUCY2C) gene. GUCY2C encodes for the guanylate-cyclase 2C (GC-C) receptor that activates the downstream cystic fibrosis transmembrane receptor (CFTR) that primarily drives the severity of diarrhea with an unclear extent of influence on other intestinal channels. Thus far, management for CSD primarily consists of mitigating nutritional, electrolyte, and volume deficiencies with no known pathophysiology-driven treatments. For activating variants of GUCY2C, experimental compounds have shown efficacy in vitro for direct inhibition of GC-C but are not currently available for clinical use. However, Crofelemer, a CFTR inhibitory modulator with negligible systemic absorption, can theoretically help to treat this type of CSD. Herein, we describe and characterize the clinical course of a premature male infant with a de novo missense variant of GUCY2C not previously reported and highly consistent with CSD. With multi-disciplinary family-directed decision-making, a treatment for CSD was evaluated for the first time to our knowledge with Crofelemer.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Criança , Humanos , Masculino , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Diarreia/genética , Diarreia/terapia , Diarreia/congênito , Intestinos , Eletrólitos/uso terapêutico , Progressão da Doença , Receptores de Enterotoxina
5.
Am J Respir Cell Mol Biol ; 70(2): 94-109, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37874230

RESUMO

Oxidative stress, inflammation, and endoplasmic reticulum (ER) stress sequentially occur in bronchopulmonary dysplasia (BPD), and all result in DNA damage. When DNA damage becomes irreparable, tumor suppressors increase, followed by apoptosis or senescence. Although cellular senescence contributes to wound healing, its persistence inhibits growth. Therefore, we hypothesized that cellular senescence contributes to BPD progression. Human autopsy lungs were obtained. Sprague-Dawley rat pups exposed to 95% oxygen between Postnatal Day 1 (P1) and P10 were used as the BPD phenotype. N-acetyl-lysyltyrosylcysteine-amide (KYC), tauroursodeoxycholic acid (TUDCA), and Foxo4 dri were administered intraperitoneally to mitigate myeloperoxidase oxidant generation, ER stress, and cellular senescence, respectively. Lungs were examined by histology, transcriptomics, and immunoblotting. Cellular senescence increased in rat and human BPD lungs, as evidenced by increased oxidative DNA damage, tumor suppressors, GL-13 stain, and inflammatory cytokines with decreased cell proliferation and lamin B expression. Cellular senescence-related transcripts in BPD rat lungs were enriched at P10 and P21. Single-cell RNA sequencing showed increased cellular senescence in several cell types, including type 2 alveolar cells. In addition, Foxo4-p53 binding increased in BPD rat lungs. Daily TUDCA or KYC, administered intraperitoneally, effectively decreased cellular senescence, improved alveolar complexity, and partially maintained the numbers of type 2 alveolar cells. Foxo4 dri administered at P4, P6, P8, and P10 led to outcomes similar to TUDCA and KYC. Our data suggest that cellular senescence plays an essential role in BPD after initial inducement by hyperoxia. Reducing myeloperoxidase toxic oxidant production, ER stress, and attenuating cellular senescence are potential therapeutic strategies for halting BPD progression.


Assuntos
Displasia Broncopulmonar , Hiperóxia , Ácido Tauroquenodesoxicólico , Recém-Nascido , Animais , Ratos , Humanos , Displasia Broncopulmonar/patologia , Hiperóxia/metabolismo , Ratos Sprague-Dawley , Pulmão/patologia , Senescência Celular , Peroxidase/metabolismo , Oxidantes , Animais Recém-Nascidos , Modelos Animais de Doenças
6.
Medicine (Baltimore) ; 102(30): e34390, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37505144

RESUMO

BACKGROUND: JKb antibody rarely causes severe hemolytic disease in the newborn except in 1 case, required blood exchange transfusion but later died of intractable seizure and renal failure. Here we describe 2 cases of JKb-induced severe neonatal jaundice requiring blood exchange transfusion with good neurological outcome. CASE PRESENTATION: Two female Chinese, ethnic Han, term infants with severe jaundice were transferred to us at the age of 5- and 4-day with a total bilirubin of 30.9 and 25.9 mg/dL while reticulocyte counts were 3.2% and 2.2%, respectively. Both infants were not the firstborn to their corresponding mothers. Direct and indirect Coombs' tests were positive, and JKb antibody titers were 1:64 (+) for both mothers. Phototherapy was immediately administered, and a blood exchange transfusion was performed within 5 hours of admission. Magnet resonance image showed no evidence of bilirubin-induced brain damage, and no abnormal neurological finding was detected at 6 months of life. CONCLUSION: JKb antibody-induced hemolytic disease of the newborn usually leads to a benign course, but severe jaundice requiring blood exchange transfusion may occur. Our cases suggest good outcomes can be achieved in this minor blood group-induced hemolytic disease of the newborn if identified and managed early enough.


Assuntos
Eritroblastose Fetal , Doenças Hematológicas , Icterícia Neonatal , Icterícia , Recém-Nascido , Lactente , Humanos , Feminino , Eritroblastose Fetal/etiologia , Eritroblastose Fetal/terapia , Icterícia Neonatal/etiologia , Icterícia Neonatal/terapia , Bilirrubina , Doenças Hematológicas/complicações , Anticorpos , Fototerapia/efeitos adversos , Icterícia/complicações
7.
Am J Respir Cell Mol Biol ; 68(4): 395-405, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36481055

RESUMO

Mitochondrial function and metabolic homeostasis are integral to cardiovascular function and influence how vascular cells respond to stress. However, little is known regarding how mitochondrial redox control mechanisms and metabolic regulation interact in the developing lungs. Here we show that human OLA1 (Obg-like ATPase-1) couples redox signals to the metabolic response pathway by activating metabolic gene transcription in the nucleus. OLA1 phosphorylation at Ser232/Tyr236 triggers its translocation from the cytoplasm and mitochondria into the nucleus. Subsequent phosphorylation of OLA1 at Thr325 effectively changes its biochemical function from ATPase to GTPase, promoting the expression of genes involved in the mitochondrial bioenergetic function. This process is regulated by ERK1/2 (extracellular-regulated kinases 1 and 2), which were restrained by PP1A (protein phosphatase 1A) when stress abated. Knockdown of ERK1 or OLA1 mutated to a phosphoresistant T325A mutant blocked its nuclear translocation, compromised the expression of nuclear-encoded mitochondrial genes, and consequently led to cellular energy depletion. Moreover, the lungs of OLA1 knockout mice have fewer mitochondria, lower cellular ATP concentrations, and higher lactate concentrations. The ensuing mitochondrial metabolic dysfunction resulted in abnormal behaviors of pulmonary vascular cells and significant vascular remodeling. Our findings demonstrate that OLA1 is an important component of the mitochondrial retrograde communication pathways that couple stress signals with metabolic genes in the nucleus. Thus, phosphorylation-dependent nuclear OLA1 localization that governs cellular energy metabolism is critical to cardiovascular function.


Assuntos
Adenosina Trifosfatases , Proteínas de Ligação ao GTP , Animais , Camundongos , Humanos , Proteínas de Ligação ao GTP/metabolismo , Fosforilação , Adenosina Trifosfatases/genética , Mitocôndrias/metabolismo , Metabolismo Energético
8.
Gut Microbes ; 14(1): 2136467, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36261888

RESUMO

The increasing incidence of Type 1 diabetes has coincided with the emergence of the low-fiber, high-gluten Western diet and other environmental factors linked to dysbiosis. Since Lactiplantibacillus plantarum 299 v (Lp299v) supplementation improves gut barrier function and reduces systemic inflammation, we studied its effects in spontaneously diabetic DRlyp/lyp rats provided a normal cereal diet (ND) or a gluten-free hydrolyzed casein diet (HCD). All rats provided ND developed diabetes (62.5±7.7 days); combining ND with Lp299v did not improve survival. Diabetes was delayed by HCD (72.2±9.4 days, p = .01) and further delayed by HCD+Lp299v (84.9±14.3 days, p < .001). HCD+Lp299v pups exhibited increased plasma propionate and butyrate levels, which correlated with enriched fecal Bifidobacteriaceae and Clostridiales taxa. Islet transcriptomic and histologic analyses at 40-days of age revealed that rats fed HCD expressed an autophagy profile, while those provided HCD+Lp299v expressed ER-associated protein degradation (ERAD) and antioxidative defense pathways, including Nrf2. Exposing insulinoma cells to propionate and butyrate promoted the antioxidative defense response but did not recapitulate the HCD+Lp299v islet ERAD transcriptomic profile. Here, both diet and microbiota influenced diabetes susceptibility. Moreover, Lp299v supplement modulated antioxidative defense and ER stress responses in ß-cells, potentially offering a new therapeutic direction to thwart diabetes progression and preserve insulin secretion.


Assuntos
Diabetes Mellitus Tipo 1 , Microbioma Gastrointestinal , Lactobacillus plantarum , Ratos , Animais , Diabetes Mellitus Tipo 1/prevenção & controle , Diabetes Mellitus Tipo 1/metabolismo , Fator 2 Relacionado a NF-E2 , Antioxidantes , Caseínas , Propionatos , Suplementos Nutricionais , Butiratos
9.
PLoS One ; 17(8): e0269564, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36018859

RESUMO

Myeloperoxidase (MPO), oxidative stress (OS), and endoplasmic reticulum (ER) stress are increased in the lungs of rat pups raised in hyperoxia, an established model of bronchopulmonary dysplasia (BPD). However, the relationship between OS, MPO, and ER stress has not been examined in hyperoxia rat pups. We treated Sprague-Dawley rat pups with tunicamycin or hyperoxia to determine this relationship. ER stress was detected using immunofluorescence, transcriptomic, proteomic, and electron microscopic analyses. Immunofluorescence observed increased ER stress in the lungs of hyperoxic rat BPD and human BPD. Proteomic and morphometric studies showed that tunicamycin directly increased ER stress of rat lungs and decreased lung complexity with a BPD phenotype. Previously, we showed that hyperoxia initiates a cycle of destruction that we hypothesized starts from increasing OS through MPO accumulation and then increases ER stress to cause BPD. To inhibit ER stress, we used tauroursodeoxycholic acid (TUDCA), a molecular chaperone. To break the cycle of destruction and reduce OS and MPO, we used N-acetyl-lysyltyrosylcysteine amide (KYC). The fact that TUDCA improved lung complexity in tunicamycin- and hyperoxia-treated rat pups supports the idea that ER stress plays a causal role in BPD. Additional support comes from data showing TUDCA decreased lung myeloid cells and MPO levels in the lungs of tunicamycin- and hyperoxia-treated rat pups. These data link OS and MPO to ER stress in the mechanisms mediating BPD. KYC's inhibition of ER stress in the tunicamycin-treated rat pup's lung provides additional support for the idea that MPO-induced ER stress plays a causal role in the BPD phenotype. ER stress appears to expand our proposed cycle of destruction. Our results suggest ER stress evolves from OS and MPO to increase neonatal lung injury and impair growth and development. The encouraging effect of TUDCA indicates that this compound has the potential for treating BPD.


Assuntos
Displasia Broncopulmonar , Hiperóxia , Pneumonia , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático , Humanos , Recém-Nascido , Pulmão , Proteômica , Ratos , Ratos Sprague-Dawley , Tunicamicina
10.
Front Genet ; 13: 970204, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36712874

RESUMO

Chronic granulomatous disease (CGD) and Duchenne muscular dystrophy (DMD) are X-linked recessive disorders whose genes are 4.47 Mb apart within Xp21.1. A combination of both diseases is rare with only five cases reported in the literature where it is known as Xp21.1 "contiguous gene deletion syndrome". We describe a male neonate who presented with sepsis at 19 days of age. The diagnosis of CGD with DMD was established through copy number variation sequencing (CNV-seq) with an extensive 7.5 Mb deletion of Xp21.2-Xp11.4 of the proband. One of his elder sisters and his mother are carriers. The deletion includes six known genes: glycerol kinase (GK), dystrophin (DMD), cilia- and flagella-associated protein 47 (CFAP47), gp91 (CYBB), Kell antigen (XK), and retinitis pigmentosa GTPase regulator (RPGR). Laboratory assays revealed an increased creatine kinase (CK) level, decreased gp91 expression, and a positive nitroblue tetrazolium test. Due to the extensive gene deletion and the poor prognosis, the family determined to pursue conservative management without further laboratory workup. The patient passed away from a fulminant infection at the age of three-month at a local medical facility. To the best of our knowledge, this case of Xp21.1 contiguous gene deletion syndrome represents the most extensive deletion of genes in this region ever reported. A literature review of similar cases is presented.

11.
World J Clin Cases ; 9(21): 6056-6066, 2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34368327

RESUMO

BACKGROUND: Familial hemophagocytic lymphohistiocytosis type 2 (FHL2) is a rare genetic disorder presenting with fever, hepatosplenomegaly, and pancytopenia secondary to perforin-1 (PRF1) mutation. FLH2 has been described in Chinese but usually presents after 1 year old. We describe a female Chinese neonate with FHL2 secondary to compound heterozygous PRF1 mutation with symptom onset before 1 mo old. We review Chinese FHL2 patients in the literature for comparison. CASE SUMMARY: A 15-d-old female neonate was referred to our hospital for persistent fever and thrombocytopenia with diffuse petechiae. She was born to a G5P3 mother at 39 wk and 4 d via cesarean section secondary to breech presentation. No resuscitation was required at birth. She was described to be very sleepy with poor appetite since birth. She developed a fever up to 39.5°C at 7 d of life. Leukocytosis, anemia, and thrombocytopenia were detected at a local medical facility. CONCLUSION: A literature review identified 75 Chinese FHL2 patients, with only five presenting in the first year of life. Missense and frameshift mutations are the most common PRF1 mutations in Chinese, with 24.8% having c.1349C>T followed by 11.6% having c.65delC. The c.658G>C mutation has only been reported once in the literature and our case suggests it can be pathogenic, at least in the presence of another pathogenic mutation such as c.1066C>T.

12.
Am J Respir Cell Mol Biol ; 65(5): 555-567, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34185619

RESUMO

Impaired angiogenesis function in pulmonary artery endothelial cells (PAEC) contributes to persistent pulmonary hypertension of the newborn (PPHN). Decreased nitric oxide (NO) amounts in PPHN lead to impaired mitochondrial biogenesis and angiogenesis in the lung; the mechanisms remain unclear. We hypothesized that decreased cyclic guanosine monophosphate (cGMP)-PKG (protein kinase G) signaling downstream of NO leads to decreased mitochondrial biogenesis and angiogenesis in PPHN. PPHN was induced by ductus arteriosus constriction from 128-136 days' gestation in fetal lambs. Control animals were gestation-matched lambs that did not undergo ductal constriction. PAEC isolated from PPHN lambs were treated with the sGC (soluble guanylate cyclase) activator cinaciguat, the PKG activator 8-bromo-cGMP, or the PDE-V (PDE type V) inhibitor sildenafil. Lysates were immunoblotted for mitochondrial transcription factors and electron transport chain C-I (complex I), C-II, C-III, C-IV, and C-V proteins. The in vitro angiogenesis of PAEC was evaluated by using tube-formation and scratch-recovery assays. cGMP concentrations were measured by using an enzyme immunoassay. Fetal lambs with ductal constriction were given sildenafil or control saline through continuous infusion in utero, and the lung histology, capillary counts, vessel density, and right ventricular pressure were assessed at birth. PPHN PAEC showed decreased mitochondrial transcription factor levels, electron transport chain protein levels, and in vitro tube formation and cell migration; these were restored by cinaciguat, 8-bromo-cGMP, and sildenafil. Cinaciguat and sildenafil increased cGMP concentrations in PPHN PAEC. Radial alveolar and capillary counts and vessel density were lower in PPHN lungs, and the right ventricular pressure and Fulton Index were higher in PPHN lungs; these were improved by in utero sildenafil infusion. cGMP-PKG signaling is a potential therapeutic target to restore decreased mitochondrial biogenesis and angiogenesis in PPHN.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Guanosina Monofosfato/metabolismo , Hipertensão Pulmonar/metabolismo , Neovascularização Patológica/metabolismo , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Feminino , Humanos , Hipertensão Pulmonar/sangue , Hipertensão Pulmonar/fisiopatologia , Recém-Nascido , Mitocôndrias/metabolismo , Neovascularização Patológica/tratamento farmacológico , Óxido Nítrico Sintase Tipo III/metabolismo , Gravidez , Artéria Pulmonar/citologia , Artéria Pulmonar/efeitos dos fármacos , Ovinos , Transdução de Sinais , Citrato de Sildenafila/farmacologia
13.
Free Radic Biol Med ; 166: 73-89, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33607217

RESUMO

Bronchopulmonary dysplasia (BPD) is caused primarily by oxidative stress and inflammation. To induce BPD, neonatal rat pups were raised in hyperoxic (>90% O2) environments from day one (P1) until day ten (P10) and treated with N-acetyl-lysyltyrosylcysteine amide (KYC). In vivo studies showed that KYC improved lung complexity, reduced myeloperoxidase (MPO) positive (+) myeloid cell counts, MPO protein, chlorotyrosine formation, increased endothelial cell CD31 expression, decreased 8-OH-dG and Cox-1/Cox-2, HMGB1, RAGE, TLR4, increased weight gain and improved survival in hyperoxic pups. EPR studies confirmed that MPO reaction mixtures oxidized KYC to a KYC thiyl radical. Adding recombinant HMGB1 to the MPO reaction mixture containing KYC resulted in KYC thiylation of HMGB1. In rat lung microvascular endothelial cell (RLMVEC) cultures, KYC thiylation of RLMVEC proteins was increased the most in RLMVEC cultures treated with MPO + H2O2, followed by H2O2, and then KYC alone. KYC treatment of hyperoxic pups decreased total HMGB1 in lung lysates, increased KYC thiylation of HMGB1, terminal HMGB1 thiol oxidation, decreased HMGB1 association with TLR4 and RAGE, and shifted HMGB1 in lung lysates from a non-acetylated to a lysyl-acetylated isoform, suggesting that KYC reduced lung cell death and that recruited immune cells had become the primary source of HMGB1 released into the hyperoxic lungs. MPO-dependent and independent KYC-thiylation of Keap1 were both increased in RLMVEC cultures. Treating hyperoxic pups with KYC increased KYC thiylation and S-glutathionylation of Keap1, and Nrf2 activation. These data suggest that KYC is a novel system pharmacological agent that exploits MPO to inhibit toxic oxidant production and is oxidized into a thiyl radical that inactivates HMGB1, activates Nrf2, and increases antioxidant enzyme expression to improve lung complexity and reduce BPD in hyperoxic rat pups.


Assuntos
Displasia Broncopulmonar , Hiperóxia , Amidas , Animais , Animais Recém-Nascidos , Humanos , Peróxido de Hidrogênio , Recém-Nascido , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Pulmão/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Ratos
14.
Physiol Rep ; 8(18): e14587, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32959498

RESUMO

We investigated the hypothesis that exposure of lungs at the saccular stage of development to hyperoxia leads to persistent growth arrest and dysfunction of 5'AMP-activated protein kinase (AMPK), a key energy sensor in the cell. We exposed neonatal rat pups from postnatal day 1- day 10 (P1-P10) to ≥90% oxygen or control normoxia. Pups were euthanized at P4 or P10 or recovered in normoxia until euthanasia at P21. Half of the pups in each group received AMPK activator, metformin, or saline intraperitoneally from P1 to P10. Lung histology, morphometric analysis, immunofluorescence, and immunoblots were done for changes in lung structure at P10 and P21 and AMPK function at P4, P10, and P21. Phosphorylation of AMPK (p-AMPK) was decreased in lungs at P10 and P21 in hyperoxia-exposed pups. Metformin increased the levels of p-AMPK and PGC-1α, a downstream AMPK target which regulates mitochondrial biogenesis, at P4, P10, and P21 in hyperoxia pups. Lung ATP levels decreased during hyperoxia and were increased by metformin at P10 and P21. Radial alveolar count and alveolar septal tips were decreased and mean linear intercept increased in hyperoxia-exposed pups at P10 and the changes persisted at P21; these were improved by metformin. Lung capillary number was decreased in hyperoxia-exposed pups at P10 and P21 and was restored by metformin. Hyperoxia leads to impaired AMPK function, energy balance and alveolar simplification. The AMPK activator, metformin improves AMPK function and alveolar and vascular growth in this rat pup model of hyperoxia-induced lung injury.


Assuntos
Antioxidantes/uso terapêutico , Hiperóxia/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Pulmão/metabolismo , Metformina/uso terapêutico , Proteínas Quinases/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Animais , Antioxidantes/farmacologia , Feminino , Hipoglicemiantes/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/crescimento & desenvolvimento , Masculino , Metformina/farmacologia , Biogênese de Organelas , Oxigênio/toxicidade , PPAR gama/genética , PPAR gama/metabolismo , Ratos , Ratos Sprague-Dawley
15.
Am J Respir Cell Mol Biol ; 62(6): 719-731, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32048878

RESUMO

Decreased angiogenesis contributes to persistent pulmonary hypertension of the newborn (PPHN); mechanisms remain unclear. AMPK (5'AMP activated protein kinase) is a key regulator of cell metabolism. We investigated the hypothesis that a decrease in AMPK function leads to mitochondrial dysfunction and altered balance of notch ligands delta-like 4 (DLL4) and Jagged 1 (Jag1) to impair angiogenesis in PPHN. Studies were done in fetal lambs with PPHN induced by prenatal ductus arteriosus constriction and gestation-matched control lambs. PPHN lambs were treated with saline or AMPK agonist metformin. Angiogenesis was assessed in lungs with micro-computed tomography angiography and histology. AMPK function; expression of mitochondrial electron transport chain (ETC) complex proteins I-V, Dll4, and Jag1; mitochondrial number; and in vitro angiogenesis function were assessed in pulmonary artery endothelial cells (PAEC) from control and PPHN lambs. AMPK function was decreased in PPHN PAEC and lung sections. Expression of mitochondrial transcription factor, PGC-1α, ETC complex proteins I-V, and mitochondrial number were decreased in PPHN. In vitro angiogenesis of PAEC and capillary number and vessel volume fraction in the lung were decreased in PPHN. Expression of DLL4 was increased and Jag1 was decreased in PAEC from PPHN lambs. AMPK agonists A769662 and metformin increased the mitochondrial complex proteins and number, in vitro angiogenesis, and Jag1 levels and decreased DLL4 levels in PPHN PAEC. Infusion of metformin in vivo increased the vessel density in PPHN lungs. Decreased AMPK function contributes to impaired angiogenesis in PPHN by altered balance of notch ligands in PPHN.


Assuntos
Células Endoteliais/enzimologia , Hipertensão Pulmonar/enzimologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína Jagged-1/metabolismo , Proteínas de Membrana/metabolismo , Neovascularização Patológica/enzimologia , Síndrome da Persistência do Padrão de Circulação Fetal/enzimologia , Proteínas Quinases/metabolismo , Receptores Notch/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Animais , Animais Recém-Nascidos , Compostos de Bifenilo , Canal Arterial/embriologia , Canal Arterial/cirurgia , Transporte de Elétrons , Ativação Enzimática , Feminino , Hipertensão Pulmonar/fisiopatologia , Ligantes , Pulmão/patologia , Metformina/farmacologia , Metformina/uso terapêutico , Mitocôndrias/metabolismo , Neovascularização Patológica/tratamento farmacológico , Síndrome da Persistência do Padrão de Circulação Fetal/tratamento farmacológico , Síndrome da Persistência do Padrão de Circulação Fetal/patologia , Síndrome da Persistência do Padrão de Circulação Fetal/fisiopatologia , Fosforilação , Gravidez , Proteínas Quinases/fisiologia , Pironas/farmacologia , Ovinos , Tiofenos/farmacologia , Treonina/metabolismo , Transfecção
16.
World J Clin Cases ; 7(20): 3202-3207, 2019 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-31667170

RESUMO

BACKGROUND: Anti-D antibody is not the common cause of Rh-isoimmunization in Chinese neonatal jaundice. Recent change in national population policy has followed by an increase in Rh-isoimmunization related hemolytic disease of the newborn (HDN). Unfortunately, regional status of Rh-HDN is unavailable. We hypothesize that Rh-HDN in our region is most commonly due to anti-E antibody. AIM: To investigate the prevalence of hemolytic disease of the newborn due to Rh-isoimmunization in Hefei City. METHODS: Retrospective review of data obtained from Children's Hospital of Anhui and Hefei Blood Center between January 2017 and June 2019. Status of minor blood group antibody was studied in the corresponding mothers. RESULTS: Totally 4138 newborns with HDN admitted during the study period and 116 (2.8%) received blood exchange transfusion (BET). Eighteen newborns (0.43%) with proven Rh-incompatible HDN were identified. All were not the first-born baby. Thirteen mothers were RhD (+) (72%) and five were RhD (-). The distribution of Rh-related antibodies in mothers was ten anti-E (55%), five anti-D (27%), and for one anti-C, anti-c, and anti-E/c (6%) each. Thirteen (72.2%) were qualified for BET, relative risk for BET was 28.9 as compared to other types of HDN, but only 10 received due to parenteral refusal. All (100%) RhD related HDN received BET which is not significantly different from RhE related HDN (81.8%). CONCLUSION: As expected, all Rh-incompatible HDN newborns were not the first-born. Contrary to the Caucasian population, anti-D induced HDN is not the most common etiology. In our region, anti-E (11/18, 61%) is the most common cause of Rh-HDN.

17.
Hypertension ; 74(4): 957-966, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31476900

RESUMO

Persistent pulmonary hypertension of the newborn (PPHN) is a failure of pulmonary vascular resistance to decline at birth rapidly. One principal mechanism implicated in PPHN development is mitochondrial oxidative stress. Expression and activity of mitochondrial SOD2 (superoxide dismutase) are decreased in PPHN; however, the mechanism remains unknown. Recently, OLA1 (Obg-like ATPase-1) was shown to act as a critical regulator of proteins controlling cell response to stress including Hsp70, an obligate chaperone for SOD2. Here, we investigated whether OLA1 is causally linked to PPHN. Compared with controls, SOD2 expression is reduced in distal-pulmonary arteries (PAs) from patients with PPHN and fetal-lamb models. Disruptions of the SOD2 gene reproduced PPHN phenotypes, manifested by elevated right ventricular systolic pressure, PA-endothelial cells apoptosis, and PA-smooth muscle cells proliferation. Analyses of SOD2 protein dynamics revealed higher ubiquitinated-SOD2 protein levels in PPHN-lambs, suggesting dysregulated protein ubiquitination. OLA1 controls multiple proteostatic mechanisms and is overexpressed in response to stress. We demonstrated that OLA1 acts as a molecular chaperone, and its activity is induced by stress. Strikingly, OLA1 expression is decreased in distal-PAs from PPHN-patients and fetal-lambs. OLA1 deficiency enhanced CHIP affinity for Hsp70-SOD2 complexes, facilitating SOD2 degradation. Consequently, mitochondrial H2O2 formation is impaired, leading to XIAP (X-linked inhibitor of apoptosis) overexpression that suppresses caspase activity in PA-smooth muscle cells, allowing them to survive and proliferate, contributing to PA remodeling. In-vivo, ola1-/- downregulated SOD2 expression, induced distal-PA remodeling, and right ventricular hypertrophy. We conclude that decreased OLA1 expression accounts for SOD2 downregulation and, therefore, a therapeutic target in PPHN treatments.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Pulmão/metabolismo , Síndrome da Persistência do Padrão de Circulação Fetal/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Superóxido Dismutase/metabolismo , Ubiquitina/metabolismo , Animais , Apoptose , Regulação para Baixo , Feminino , Hemodinâmica/fisiologia , Humanos , Peróxido de Hidrogênio/metabolismo , Recém-Nascido , Masculino , Mitocôndrias/metabolismo , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Ovinos , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo
18.
Physiol Rep ; 7(3): e13986, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30706701

RESUMO

Previous studies in adult pulmonary hypertension reported that increased hypoxia-inducible factor-1α (HIF-1α) signaling contributes to pulmonary vascular remodeling. However, alterations in endothelial HIF-1α signaling and its contribution to impaired angiogenesis in persistent pulmonary hypertension of the newborn (PPHN) remain unclear. We investigated the hypothesis that HIF-1α levels are increased in lung endothelial cells in PPHN and contribute to impaired angiogenesis function. We examined HIF-1α expression and promoter activity in the isolated pulmonary artery endothelial cells (PAEC) from fetal lambs with or without PPHN induced by prenatal ductus arteriosus constriction. We measured the levels of HIF-1α downstream targets, vascular endothelial growth factor (VEGF) and glycolytic protein, hexokinase 2 (Hek-2) in PAEC from PPHN, and control lambs. We examined the effect of small interfering-RNA (siRNA) mediated knockdown of native HIF-1α on VEGF expression and in vitro angiogenesis function of PPHN-PAEC. HIF-1α protein levels were higher in the isolated PAEC from PPHN-lambs compared to controls. HIF-1α promoter activity and Hek-2 protein levels were higher in PPHN. VEGF protein levels and in vitro angiogenesis function were decreased in PAEC from PPHN lambs. HIF-1α silencing significantly increased the expression of VEGF and improved the angiogenesis function of PPHN PAEC. Aberrant HIF-1α signaling contributes to endothelial dysfunction and decreased angiogenesis in PPHN.


Assuntos
Células Endoteliais/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Pulmão/irrigação sanguínea , Neovascularização Fisiológica , Síndrome da Persistência do Padrão de Circulação Fetal/metabolismo , Artéria Pulmonar/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Modelos Animais de Doenças , Feminino , Hexoquinase/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Síndrome da Persistência do Padrão de Circulação Fetal/fisiopatologia , Gravidez , Artéria Pulmonar/fisiopatologia , Carneiro Doméstico , Transdução de Sinais , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/metabolismo
19.
Cell Rep ; 25(9): 2605-2616.e7, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30485823

RESUMO

The import of superoxide dismutase-2 (SOD2) into mitochondria is vital for the survival of eukaryotic cells. SOD2 is encoded within the nuclear genome and translocated into mitochondria for activation after translation in the cytosol. The molecular chaperone Hsp70 modulates SOD2 activity by promoting import of SOD2 into mitochondria. In turn, the activity of Hsp70 is controlled by co-chaperones, particularly CHIP, which directs Hsp70-bound proteins for degradation in the proteasomes. We investigated the mechanisms controlling the activity of SOD2 to signal activation and maintain mitochondrial redox balance. We demonstrate that Akt1 binds to and phosphorylates the C terminus of Hsp70 on Serine631, which inhibits CHIP-mediated SOD2 degradation thereby stabilizing and promoting SOD2 import. Conversely, increased mitochondrial-H2O2 formation disrupts Akt1-mediated phosphorylation of Hsp70, and non-phosphorylatable Hsp70 mutants decrease SOD2 import, resulting in mitochondrial oxidative stress. Our findings identify Hsp70 phosphorylation as a physiological mechanism essential for regulation of mitochondrial redox balance.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Mitocôndrias/metabolismo , Superóxido Dismutase/metabolismo , Sequência de Aminoácidos , Animais , Células Endoteliais/metabolismo , Estabilidade Enzimática , Feminino , Células HEK293 , Proteínas de Choque Térmico HSP70/química , Humanos , Peróxido de Hidrogênio/metabolismo , Oxirredução , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Ligação Proteica , Transporte Proteico , Proteólise , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Serina/metabolismo , Ovinos , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo
20.
Pediatr Res ; 82(3): 483-489, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28399119

RESUMO

BackgroundBronchopulmonary dysplasia (BPD) is a major morbidity in premature infants, and impaired angiogenesis is considered a major contributor to BPD. Early caffeine treatment decreases the incidence of BPD; the mechanism remains incompletely understood.MethodsSprague-Dawley rat pups exposed to normoxia or hyperoxia since birth were treated daily with either 20 mg/kg caffeine or normal saline by an intraperitoneal injection from day 2 of life. The lungs were obtained for studies at days 10 and 21.ResultsHyperoxia impaired somatic growth and lung growth in the rat pups. The impaired lung growth during hyperoxia was associated with decreased levels of cyclic AMP (cAMP) and tetrahydrobiopterin (BH4) in the lungs. Early caffeine treatment increased cAMP levels in the lungs of hyperoxia-exposed pups. Caffeine also increased the levels of phosphorylated endothelial nitric oxide synthase (eNOS) at serine1177, total and serine51 phosphorylated GTP cyclohydrolase 1 (GCH1), and BH4 levels, with improved alveolar structure and angiogenesis in hyperoxia-exposed lungs. Reduced GCH1 levels in hyperoxia were due, in part, to increased degradation by the ubiquitin-proteasome system.ConclusionOur data support the notion that early caffeine treatment can protect immature lungs from hyperoxia-induced damage by improving eNOS activity through increased BH4 bioavailability.


Assuntos
Animais Recém-Nascidos , Cafeína/farmacologia , GTP Cicloidrolase/metabolismo , Hiperóxia/complicações , Lesão Pulmonar/prevenção & controle , Animais , AMP Cíclico/metabolismo , Feminino , Lesão Pulmonar/fisiopatologia , Gravidez , Ratos , Ratos Sprague-Dawley , Aumento de Peso/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...