Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Res Notes ; 12(1): 78, 2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30744663

RESUMO

OBJECTIVE: Obesity often emerges in middle age, increasing risk for metabolic disorders. Our previous preclinical experiments identified that chronic exposure to non-burning ultraviolet radiation, like that achieved through sun exposure, prevented weight gain and signs of metabolic dysfunction in young adult mice fed a high fat diet. Our objective was to perform a pilot study to estimate the effect size of ongoing exposure to sub-erythemal (non-burning, low dose) UVB (1 kJ/m2) radiation on measures of adiposity, food intake and physical activity in 'mature' adult C57Bl/6J male mice fed a high fat diet for 12 weeks. RESULTS: The severity of liver steatosis, fibrosis and inflammation were reduced in older adult mice exposed twice a week to ultraviolet radiation (from 29 weeks of age), compared to mock-irradiated mice, with some evidence for reduced hepatic mRNAs for tnf and tgfß1 (not fatp2 nor fasN). Power analyses suggested that up to 24 mice per treatment would be required in future experiments to detect a significant effect on some markers of adiposity such as body weight gain. Our studies suggest frequent exposure to low levels of sunlight may reduce the severity of hepatic steatosis induced in older adults living in environments of high caloric intake.


Assuntos
Dieta Hiperlipídica , Hepatopatia Gordurosa não Alcoólica/radioterapia , Raios Ultravioleta , Adiposidade/efeitos da radiação , Fatores Etários , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Projetos Piloto , Terapia Ultravioleta
2.
J Virol ; 90(15): 6918-6935, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27307565

RESUMO

UNLABELLED: Cleavage and polyadenylation specificity factor subunit 6 (CPSF6), a host factor that interacts with the HIV-1 capsid (CA) protein, is implicated in diverse functions during the early part of the HIV-1 life cycle, including uncoating, nuclear entry, and integration targeting. Preservation of CA binding to CPSF6 in vivo suggests that this interaction is fine-tuned for efficient HIV-1 replication in physiologically relevant settings. Nevertheless, this possibility has not been formally examined. To assess the requirement for optimal CPSF6-CA binding during infection of primary cells and in vivo, we utilized a novel CA mutation, A77V, that significantly reduced CA binding to CPSF6. The A77V mutation rendered HIV-1 largely independent from TNPO3, NUP358, and NUP153 for infection and altered the integration site preference of HIV-1 without any discernible effects during the late steps of the virus life cycle. Surprisingly, the A77V mutant virus maintained the ability to replicate in monocyte-derived macrophages, primary CD4(+) T cells, and humanized mice at a level comparable to that for the wild-type (WT) virus. Nonetheless, revertant viruses that restored the WT CA sequence and hence CA binding to CPSF6 emerged in three out of four A77V-infected animals. These results suggest that the optimal interaction of CA with CPSF6, though not absolutely essential for HIV-1 replication in physiologically relevant settings, confers a significant fitness advantage to the virus and thus is strictly conserved among naturally circulating HIV-1 strains. IMPORTANCE: CPSF6 interacts with the HIV-1 capsid (CA) protein and has been implicated in nuclear entry and integration targeting. Preservation of CPSF6-CA binding across various HIV-1 strains suggested that the optimal interaction between CA and CPSF6 is critical during HIV-1 replication in vivo Here, we identified a novel HIV-1 capsid mutant that reduces binding to CPSF6, is largely independent from the known cofactors for nuclear entry, and alters integration site preference. Despite these changes, virus carrying this mutation replicated in humanized mice at levels indistinguishable from those of the wild-type virus. However, in the majority of the animals, the mutant virus reverted back to the wild-type sequence, hence restoring the wild-type level of CA-CPSF6 interactions. These results suggest that optimal binding of CA to CPSF6 is not absolutely essential for HIV-1 replication in vivo but provides a fitness advantage that leads to the widespread usage of CPSF6 by HIV-1 in vivo.


Assuntos
Linfócitos T CD4-Positivos/virologia , Proteínas do Capsídeo/metabolismo , Infecções por HIV/virologia , HIV-1/fisiologia , Macrófagos/virologia , Replicação Viral , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Animais , Linfócitos T CD4-Positivos/metabolismo , Células Cultivadas , Células HEK293 , Infecções por HIV/metabolismo , Células HeLa , Humanos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos NOD
3.
J Virol ; 90(12): 5808-5823, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27076642

RESUMO

UNLABELLED: The viral capsid of HIV-1 interacts with a number of host factors to orchestrate uncoating and regulate downstream events, such as reverse transcription, nuclear entry, and integration site targeting. PF-3450074 (PF74), an HIV-1 capsid-targeting low-molecular-weight antiviral compound, directly binds to the capsid (CA) protein at a site also utilized by host cell proteins CPSF6 and NUP153. Here, we found that the dose-response curve of PF74 is triphasic, consisting of a plateau and two inhibitory phases of different slope values, consistent with a bimodal mechanism of drug action. High PF74 concentrations yielded a steep curve with the highest slope value among different classes of known antiretrovirals, suggesting a dose-dependent, cooperative mechanism of action. CA interactions with both CPSF6 and cyclophilin A (CypA) were essential for the unique dose-response curve. A shift of the steep curve at lower drug concentrations upon blocking the CA-CypA interaction suggests a protective role for CypA against high concentrations of PF74. These findings, highlighting the unique characteristics of PF74, provide a model in which its multimodal mechanism of action of both noncooperative and cooperative inhibition by PF74 is regulated by interactions of cellular proteins with incoming viral capsids. IMPORTANCE: PF74, a novel capsid-targeting antiviral against HIV-1, shares its binding site in the viral capsid protein (CA) with the host factors CPSF6 and NUP153. This work reveals that the dose-response curve of PF74 consists of two distinct inhibitory phases that are differentially regulated by CA-interacting host proteins. PF74's potency depended on these CA-binding factors at low doses. In contrast, the antiviral activity of high PF74 concentrations was attenuated by cyclophilin A. These observations provide novel insights into both the mechanism of action of PF74 and the roles of host factors during the early steps of HIV-1 infection.


Assuntos
Fármacos Anti-HIV/farmacologia , Capsídeo/metabolismo , HIV-1/efeitos dos fármacos , Interações Hospedeiro-Patógeno , Indóis/farmacologia , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Fenilalanina/análogos & derivados , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Sítios de Ligação , Capsídeo/efeitos dos fármacos , Proteínas do Capsídeo/metabolismo , Ciclofilina A/metabolismo , Ciclofilina A/farmacologia , Células HEK293 , HIV-1/fisiologia , Células HeLa , Humanos , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Fenilalanina/farmacologia , Transcrição Reversa/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Fatores de Poliadenilação e Clivagem de mRNA/deficiência , Fatores de Poliadenilação e Clivagem de mRNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...