Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Behav Immun ; 120: 121-140, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38777288

RESUMO

BACKGROUND: The purinergic ATP-gated P2X7 receptor (P2X7R) is increasingly recognized to contribute to pathological neuroinflammation and brain hyperexcitability. P2X7R expression has been shown to be increased in the brain, including both microglia and neurons, in experimental models of epilepsy and patients. To date, the cell type-specific downstream effects of P2X7Rs during seizures remain, however, incompletely understood. METHODS: Effects of P2X7R signaling on seizures and epilepsy were analyzed in induced seizure models using male mice including the kainic acid model of status epilepticus and pentylenetetrazole model and in male and female mice in a genetic model of Dravet syndrome. RNA sequencing was used to analyze P2X7R downstream signaling during seizures. To investigate the cell type-specific role of the P2X7R during seizures and epilepsy, we generated mice lacking exon 2 of the P2rx7 gene in either microglia (P2rx7:Cx3cr1-Cre) or neurons (P2rx7:Thy-1-Cre). To investigate the protective potential of overexpressing P2X7R in GABAergic interneurons, P2X7Rs were overexpressed using adeno-associated virus transduction under the mDlx promoter. RESULTS: RNA sequencing of hippocampal tissue from wild-type and P2X7R knock-out mice identified both glial and neuronal genes, in particular genes involved in GABAergic signaling, under the control of the P2X7R following seizures. Mice with deleted P2rx7 in microglia displayed less severe acute seizures and developed a milder form of epilepsy, and microglia displayed an anti-inflammatory molecular profile. In contrast, mice lacking P2rx7 in neurons showed a more severe seizure phenotype when compared to epileptic wild-type mice. Analysis of single-cell expression data revealed that human P2RX7 expression is elevated in the hippocampus of patients with temporal lobe epilepsy in excitatory and inhibitory neurons. Functional studies determined that GABAergic interneurons display increased responses to P2X7R activation in experimental epilepsy. Finally, we show that viral transduction of P2X7R in GABAergic interneurons protects against evoked and spontaneous seizures in experimental temporal lobe epilepsy and in mice lacking Scn1a, a model of Dravet syndrome. CONCLUSIONS: Our results suggest a dual and opposing action of P2X7R in epilepsy and suggest P2X7R overexpression in GABAergic interneurons as a novel therapeutic strategy for acquired and, possibly, genetic forms of epilepsy.

2.
Biochim Biophys Acta Gene Regul Mech ; 1867(1): 195005, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242428

RESUMO

The mechanistic target of rapamycin complex 1 (mTORC1) is a kinase complex that plays a crucial role in coordinating cell growth in response to various signals, including amino acids, growth factors, oxygen, and ATP. Activation of mTORC1 promotes cell growth and anabolism, while its suppression leads to catabolism and inhibition of cell growth, enabling cells to withstand nutrient scarcity and stress. Dysregulation of mTORC1 activity is associated with numerous diseases, such as cancer, metabolic disorders, and neurodegenerative conditions. This review focuses on how post-translational modifications, particularly phosphorylation and ubiquitination, modulate mTORC1 signaling pathway and their consequential implications for pathogenesis. Understanding the impact of phosphorylation and ubiquitination on the mTORC1 signaling pathway provides valuable insights into the regulation of cellular growth and potential therapeutic targets for related diseases.


Assuntos
Complexos Multiproteicos , Serina-Treonina Quinases TOR , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Serina-Treonina Quinases TOR/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Transdução de Sinais , Expressão Gênica
3.
Arch Biochem Biophys ; 730: 109399, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36116505

RESUMO

Heme proteins play vital roles in regulating the reactive oxygen/nitrogen species (ROS/RNS) levels in cells. In this study, we overexpressed human wild-type (WT) myoglobin (Mb) and its double mutant, F43H/H64A Mb with enhanced nitrite reductase (NIR) activity, in the typical representative triple-negative breast cancer cell, MDA-MB-231 cells. The results showed that the overexpression of F43H/H64A Mb increased the level of nitric oxide (NO) and the degree of oxidative stress, and then activated Akt/MAPK mediated apoptotic cascade, whereas WT Mb showed the opposite effect. This study indicates that Mb plays an important role in maintaining the balance of the cellular redox system and could thus be a valuable target for cancer therapy.


Assuntos
Neoplasias da Mama , Mioglobina , Humanos , Feminino , Mioglobina/genética , Mioglobina/metabolismo , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Espécies Reativas de Oxigênio , Neoplasias da Mama/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Estresse Oxidativo , Oxigênio/metabolismo , Nitrito Redutases/genética , Nitrito Redutases/metabolismo , Nitrogênio
4.
Cell Rep ; 39(2): 110647, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35417721

RESUMO

Unicellular eukaryotes have been suggested as undergoing self-inflicted destruction. However, molecular details are sparse compared with the mechanisms of programmed/regulated cell death known for human cells and animal models. Here, we report a molecular cell death pathway in Saccharomyces cerevisiae leading to vacuole/lysosome membrane permeabilization. Following a transient cell death stimulus, yeast cells die slowly over several hours, consistent with an ongoing molecular dying process. A genome-wide screen for death-promoting factors identified all subunits of the AP-3 complex, a vesicle trafficking adapter known to transport and install newly synthesized proteins on the vacuole/lysosome membrane. To promote cell death, AP-3 requires its Arf1-GTPase-dependent vesicle trafficking function and the kinase Yck3, which is selectively transported to the vacuole membrane by AP-3. Video microscopy revealed a sequence of events where vacuole permeability precedes the loss of plasma membrane integrity. AP-3-dependent death appears to be conserved in the human pathogenic yeast Cryptococcus neoformans.


Assuntos
Morte Celular , Proteínas de Ligação a DNA , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Fatores de Transcrição , Caseína Quinase I/metabolismo , Membrana Celular/metabolismo , Lisossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo
5.
J Biol Chem ; 294(35): 12921-12932, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31296663

RESUMO

Large-conductance calcium-activated potassium (BK) channels are ubiquitously expressed in most cell types where they regulate many cellular, organ, and organismal functions. Although BK currents have been recorded specifically in activated murine and human microglia, it is not yet clear whether and how the function of this channel is related to microglia activation. Here, using patch-clamping, Griess reaction, ELISA, immunocytochemistry, and immunoblotting approaches, we show that specific inhibition of the BK channel with paxilline (10 µm) or siRNA-mediated knockdown of its expression significantly suppresses lipopolysaccharide (LPS)-induced (100 ng/ml) BV-2 and primary mouse microglial cell activation. We found that membrane BK current is activated by LPS at a very early stage through Toll-like receptor 4 (TLR4), leading to nuclear translocation of NF-κB and to production of inflammatory cytokines. Furthermore, we noted that BK channels are also expressed intracellularly, and their nuclear expression significantly increases in late stages of LPS-mediated microglia activation, possibly contributing to production of nitric oxide, tumor necrosis factor-α, and interleukin-6. Of note, a specific TLR4 inhibitor suppressed BK channel expression, whereas an NF-κB inhibitor did not. Taken together, our findings indicate that BK channels participate in both the early and the late stages of LPS-stimulated murine microglia activation involving both membrane-associated and nuclear BK channels.


Assuntos
Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Lipopolissacarídeos/farmacologia , Microglia/efeitos dos fármacos , Animais , Células Cultivadas , Feminino , Indóis/farmacologia , Lipopolissacarídeos/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , RNA Interferente Pequeno/farmacologia
6.
CNS Neurosci Ther ; 25(7): 887-902, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31197948

RESUMO

The underlying molecular basis for neurodevelopmental or neuropsychiatric disorders is not known. In contrast, mechanistic understanding of other brain disorders including neurodegeneration has advanced considerably. Yet, these do not approach the knowledge accrued for many cancers with precision therapeutics acting on well-characterized targets. Although the identification of genes responsible for neurodevelopmental and neuropsychiatric disorders remains a major obstacle, the few causally associated genes are ripe for discovery by focusing efforts to dissect their mechanisms. Here, we make a case for delving into mechanisms of the poorly characterized human KCTD gene family. Varying levels of evidence support their roles in neurocognitive disorders (KCTD3), neurodevelopmental disease (KCTD7), bipolar disorder (KCTD12), autism and schizophrenia (KCTD13), movement disorders (KCTD17), cancer (KCTD11), and obesity (KCTD15). Collective knowledge about these genes adds enhanced value, and critical insights into potential disease mechanisms have come from unexpected sources. Translation of basic research on the KCTD-related yeast protein Whi2 has revealed roles in nutrient signaling to mTORC1 (KCTD11) and an autophagy-lysosome pathway affecting mitochondria (KCTD7). Recent biochemical and structure-based studies (KCTD12, KCTD13, KCTD16) reveal mechanisms of regulating membrane channel activities through modulation of distinct GTPases. We explore how these seemingly varied functions may be disease related.


Assuntos
Transtornos do Neurodesenvolvimento/metabolismo , Proteínas/metabolismo , Animais , Humanos , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/metabolismo , Transtornos do Neurodesenvolvimento/genética , Proteínas/genética
7.
Curr Genet ; 65(3): 701-709, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30701278

RESUMO

A critical function of human, yeast, and bacterial cells is the ability to sense and respond to available nutrients such as glucose and amino acids. Cells must also detect declining nutrient levels to adequately prepare for starvation conditions by inhibiting cell growth and activating autophagy. The evolutionarily conserved protein complex TORC1 regulates these cellular responses to nutrients, and in particular to amino acid availability. Recently, we found that yeast Whi2 (Saccharomyces cerevisiae) and a human counterpart, KCTD11, that shares a conserved BTB structural domain, are required to suppress TORC1 activity under low amino acid conditions. Using yeast, the mechanisms were more readily dissected. Unexpectedly, Whi2 suppresses TORC1 activity independently of the well-known SEACIT-GTR pathway, analogous to the GATOR1-RAG pathway in mammals. Instead, Whi2 requires the plasma membrane-associated phosphatases Psr1 and Psr2, which were known to bind Whi2, although their role was unknown. Yeast WHI2 was previously reported to be involved in regulating several fundamental cellular processes including cell cycle arrest, general stress responses, the Ras-cAMP-PKA pathway, autophagy, and mitophagy, and to be frequently mutated in the yeast knockout collections and in genome evolution studies. Most of these observations are likely explained by the ability of Whi2 to inhibit TORC1. Thus, understanding the function of yeast Whi2 will provide deeper insights into the disease-related KCTD family proteins and the pathogenesis of plant and human fungal infections.


Assuntos
Aminoácidos/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Humanos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
8.
Ann Neurol ; 84(5): 766-780, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30295347

RESUMO

OBJECTIVE: Several small case series identified KCTD7 mutations in patients with a rare autosomal recessive disorder designated progressive myoclonic epilepsy (EPM3) and neuronal ceroid lipofuscinosis (CLN14). Despite the name KCTD (potassium channel tetramerization domain), KCTD protein family members lack predicted channel domains. We sought to translate insight gained from yeast studies to uncover disease mechanisms associated with deficiencies in KCTD7 of unknown function. METHODS: Novel KCTD7 variants in new and published patients were assessed for disease causality using genetic analyses, cell-based functional assays of patient fibroblasts and knockout yeast, and electron microscopy of patient samples. RESULTS: Patients with KCTD7 mutations can exhibit movement disorders or developmental regression before seizure onset, and are distinguished from similar disorders by an earlier age of onset. Although most published KCTD7 patient variants were excluded from a genome sequence database of normal human variations, most newly identified patient variants are present in this database, potentially challenging disease causality. However, genetic analysis and impaired biochemical interactions with cullin 3 support a causal role for patient KCTD7 variants, suggesting deleterious alleles of KCTD7 and other rare disease variants may be underestimated. Both patient-derived fibroblasts and yeast lacking Whi2 with sequence similarity to KCTD7 have impaired autophagy consistent with brain pathology. INTERPRETATION: Biallelic KCTD7 mutations define a neurodegenerative disorder with lipofuscin and lipid droplet accumulation but without defining features of neuronal ceroid lipofuscinosis or lysosomal storage disorders. KCTD7 deficiency appears to cause an underlying autophagy-lysosome defect conserved in yeast, thereby assigning a biological role for KCTD7. Ann Neurol 2018;84:774-788.


Assuntos
Autofagia/genética , Lisossomos/genética , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Canais de Potássio/deficiência , Idade de Início , Pré-Escolar , Feminino , Humanos , Lactente , Lisossomos/patologia , Masculino , Mutação , Linhagem , Canais de Potássio/genética , Proteínas de Saccharomyces cerevisiae/genética
9.
PLoS Genet ; 14(8): e1007592, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30142151

RESUMO

Yeast WHI2 was originally identified in a genetic screen for regulators of cell cycle arrest and later suggested to function in general stress responses. However, the function of Whi2 is unknown. Whi2 has predicted structure and sequence similarity to human KCTD family proteins, which have been implicated in several cancers and are causally associated with neurological disorders but are largely uncharacterized. The identification of conserved functions between these yeast and human proteins may provide insight into disease mechanisms. We report that yeast WHI2 is a new negative regulator of TORC1 required to suppress TORC1 activity and cell growth specifically in response to low amino acids. In contrast to current opinion, WHI2 is dispensable for TORC1 inhibition in low glucose. The only widely conserved mechanism that actively suppresses both yeast and mammalian TORC1 specifically in response to low amino acids is the conserved SEACIT/GATOR1 complex that inactivates the TORC1-activating RAG-like GTPases. Unexpectedly, Whi2 acts independently and simultaneously with these established GATOR1-like Npr2-Npr3-Iml1 and RAG-like Gtr1-Gtr2 complexes, and also acts independently of the PKA pathway. Instead, Whi2 inhibits TORC1 activity through its binding partners, protein phosphatases Psr1 and Psr2, which were previously thought to only regulate amino acid levels downstream of TORC1. Furthermore, the ability to suppress TORC1 is conserved in the SKP1/BTB/POZ domain-containing, Whi2-like human protein KCTD11 but not other KCTD family members tested.


Assuntos
Aminoácidos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Animais , Células COS , Chlorocebus aethiops , Regulação da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
10.
FEMS Yeast Res ; 18(8)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30165592

RESUMO

Cells are exquisitely tuned to environmental ques. Amino acid availability is rapidly sensed, allowing cells to adjust molecular processes and implement short or long-term metabolic shifts accordingly. How levels of most individual amino acids may be sensed and subsequently signaled to inform cells of their nutrient status is largely unknown. We made the unexpected observation that small changes in the levels of specific amino acids can have a profound effect on yeast cell growth, leading to the identification of yeast Whi2 as a negative regulator of cell growth in low amino acids. Although Whi2 was originally thought to be fungi-specific, Whi2 appears to share a conserved structural domain found in a family of 25 largely uncharacterized human genes encoding the KCTD (potassium channel tetramerization domain) protein family. Insights gained from yeast Whi2 are likely to be revealing about human KCTDs, many of which have been implicated or demonstrated to cause disease when mutated. Here we report new evidence that Whi2 responds to specific amino acids in the medium, particularly low leucine levels. We also discuss the known pathways of amino acid signaling and potential points of regulation by Whi2 in nutrient signaling in yeast and mammals.


Assuntos
Adaptação Fisiológica , Regulação Fúngica da Expressão Gênica , Leucina/metabolismo , Viabilidade Microbiana , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética
11.
Semin Cell Dev Biol ; 39: 3-11, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25725369

RESUMO

Inappropriate survival of abnormal cells underlies tumorigenesis. Most discoveries about programmed cell death have come from studying model organisms. Revisiting the experimental contexts that inspired these discoveries helps explain confounding biases that inevitably accompany such discoveries. Amending early biases has added a newcomer to the collection of cell death models. Analysis of gene-dependent death in yeast revealed the surprising influence of single gene mutations on subsequent eukaryotic genome evolution. Similar events may influence the selection for mutations during early tumorigenesis. The possibility that any early random mutation might drive the selection for a cancer driver mutation is conceivable but difficult to demonstrate. This was tested in yeast, revealing that mutation of almost any gene appears to specify the selection for a new second mutation. Some human tumors contain pairs of mutant genes homologous to co-occurring mutant genes in yeast. Here we consider how yeast again provide novel insights into tumorigenesis.


Assuntos
Evolução Biológica , Morte Celular , Neoplasias/genética , Neoplasias/patologia , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Animais , Humanos , Metamorfose Biológica , Mutação , Neoplasias/tratamento farmacológico , Microambiente Tumoral
12.
Microb Cell ; 1(6): 206-209, 2014 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-28357245

RESUMO

Cancer cells are riddled with mutations. Less than one percent of these are thought to be mutations that drive cancer phenotypes. However, a recent study conducted on the yeast knockout collections by Teng et al. [Mol. Cell (2013) 52: 485-494] provides hard evidence that single gene deletions/mutations in most non-essential genes can drive the selection for cancer-like mutations.

13.
Mol Cell ; 52(4): 485-94, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24211263

RESUMO

Loss or duplication of chromosome segments can lead to further genomic changes associated with cancer. However, it is not known whether only a select subset of genes is responsible for driving further changes. To determine whether perturbation of any given gene in a genome suffices to drive subsequent genetic changes, we analyzed the yeast knockout collection for secondary mutations of functional consequence. Unlike wild-type, most gene knockout strains were found to have one additional mutant gene affecting nutrient responses and/or heat-stress-induced cell death. Moreover, independent knockouts of the same gene often evolved mutations in the same secondary gene. Genome sequencing identified acquired mutations in several human tumor suppressor homologs. Thus, mutation of any single gene may cause a genomic imbalance, with consequences sufficient to drive adaptive genetic changes. This complicates genetic analyses but is a logical consequence of losing a functional unit originally acquired under pressure during evolution.


Assuntos
Genoma Fúngico , Saccharomyces cerevisiae/genética , Adaptação Biológica/genética , Sequência de Bases , Evolução Molecular , Deleção de Genes , Técnicas de Inativação de Genes , Heterogeneidade Genética , Instabilidade Genômica , Humanos , Mutação , Neoplasias/genética , Fenótipo , Análise de Sequência de DNA , Estresse Fisiológico/genética
14.
Methods Mol Biol ; 1004: 161-70, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23733576

RESUMO

Yeast are the foremost genetic model system. With relative ease, entire chemical libraries can be screened for effects on essentially every gene in the yeast genome. Until recently, researchers focused only on whether yeast were killed by the conditions applied, irrespective of the mechanisms by which they died. In contrast, considerable effort has been devoted to understanding the mechanisms of mammalian cell death. However, most of the methodologies for detecting programmed apoptotic and necrotic death of mammalian cells have not been applicable to yeast. Therefore, we developed a cell death assay for baker's yeast Saccharomyces cerevisiae to identify genes involved in the mechanisms of yeast cell death. Small volumes of yeast suspensions are subjected to a precisely controlled heat ramp, allowing sufficient time for yeast cell factors to suppress or facilitate death, which can be quantified by high-throughput automated analyses. This assay produces remarkably reliable results that typically reflect results with other death stimuli. Here we describe the protocol and its caveats, which can be easily overcome.


Assuntos
Técnicas Citológicas/métodos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Morte Celular , Contagem de Colônia Microbiana , Temperatura Alta , Viabilidade Microbiana , Saccharomyces cerevisiae/crescimento & desenvolvimento , Coloração e Rotulagem
15.
J Cell Biol ; 195(2): 263-76, 2011 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-21987637

RESUMO

Mammalian Bcl-x(L) protein localizes to the outer mitochondrial membrane, where it inhibits apoptosis by binding Bax and inhibiting Bax-induced outer membrane permeabilization. Contrary to expectation, we found by electron microscopy and biochemical approaches that endogenous Bcl-x(L) also localized to inner mitochondrial cristae. Two-photon microscopy of cultured neurons revealed large fluctuations in inner mitochondrial membrane potential when Bcl-x(L) was genetically deleted or pharmacologically inhibited, indicating increased total ion flux into and out of mitochondria. Computational, biochemical, and genetic evidence indicated that Bcl-x(L) reduces futile ion flux across the inner mitochondrial membrane to prevent a wasteful drain on cellular resources, thereby preventing an energetic crisis during stress. Given that F(1)F(O)-ATP synthase directly affects mitochondrial membrane potential and having identified the mitochondrial ATP synthase ß subunit in a screen for Bcl-x(L)-binding partners, we tested and found that Bcl-x(L) failed to protect ß subunit-deficient yeast. Thus, by bolstering mitochondrial energetic capacity, Bcl-x(L) may contribute importantly to cell survival independently of other Bcl-2 family proteins.


Assuntos
Metabolismo Energético , Potencial da Membrana Mitocondrial/fisiologia , Membranas Mitocondriais/metabolismo , Proteína bcl-X/fisiologia , Animais , Sobrevivência Celular , Células Cultivadas , Proteínas Fúngicas , Camundongos , Camundongos Knockout , Microscopia Eletrônica , Mitocôndrias , Neurônios , Proteína bcl-X/deficiência
16.
Biochim Biophys Acta ; 1813(4): 597-607, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20950655

RESUMO

Although mitochondria are essential organelles for long-term survival of eukaryotic cells, recent discoveries in biochemistry and genetics have advanced our understanding of the requirements for mitochondria in cell death. Much of what we understand about cell death is based on the identification of conserved cell death genes in Drosophila melanogaster and Caenorhabditis elegans. However, the role of mitochondria in cell death in these models has been much less clear. Considering the active role that mitochondria play in apoptosis in mammalian cells, the mitochondrial contribution to cell death in non-mammalian systems has been an area of active investigation. In this article, we review the current research on this topic in three non-mammalian models, C. elegans, Drosophila, and Saccharomyces cerevisiae. In addition, we discuss how non-mammalian models have provided important insight into the mechanisms of human disease as they relate to the mitochondrial pathway of cell death. The unique perspective derived from each of these model systems provides a more complete understanding of mitochondria in programmed cell death. This article is part of a Special Issue entitled Mitochondria: the deadly organelle.


Assuntos
Apoptose , Caenorhabditis elegans/metabolismo , Drosophila melanogaster/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Saccharomyces cerevisiae/metabolismo , Animais , Humanos
17.
Cell ; 141(3): 402-4, 2010 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-20434981

RESUMO

The mechanism by which the apoptosome activates caspases during apoptosis has been controversial. Qi et al. (2010) now present a crystal structure of a funnel-shaped octameric apoptosome complex from the nematode Caenorhabditis elegans that challenges currently held assumptions about the human apoptosome structure.

18.
Methods Mol Biol ; 559: 335-42, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19609767

RESUMO

Accumulating evidence suggests that yeasts are capable of undergoing programmed cell death (PCD) to benefit long-term survival of the species, and that yeast and mammals may share at least partially conserved PCD pathways. In our experience, mammalian apoptosis assays have not been readily applicable to yeast. Therefore, to take advantage of yeast as a genetic tool to study PCD, we developed a yeast cell death assay that can reliably reveal viability differences between wild-type strains and strains lacking the mitochondrial fission genes DNM1/Drp1 and FIS1, orthologs of mammalian cell death regulators. Cell viability following treatment with acetic acid is quantified by colony formation and vital dye (FUN1) staining to reproducibly detect dose-dependent, genetically programmed yeast cell death.


Assuntos
Apoptose , Técnicas Microbiológicas , Leveduras/citologia , Ácido Acético , Sobrevivência Celular , Contagem de Colônia Microbiana , Proteínas Fúngicas/genética , Genes Fúngicos , Proteínas Mitocondriais/genética , Leveduras/genética , Leveduras/crescimento & desenvolvimento , Leveduras/metabolismo
19.
Biometals ; 22(5): 817-26, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19306065

RESUMO

Metallothinein-3 (MT3), also named neuronal growth inhibitory factor (GIF), is attractive by its distinct neuronal growth inhibitory activity, which is not shared by other MT isoforms. The polypeptide chain of GIF is folded into two individual domains, which are connected by a highly conserved linker, KKS. In order to figure out the significance of the conserved segment, we constructed several mutants of human GIF (hGIF), including the K31/32A mutant, the K31/32E mutant and the KKS-SP mutant by site-directed mutagenesis. pH titration and DTNB reaction exhibited that all the three mutations made the beta-domain lower in stability and looser. More significantly, change of KKS to SP also altered the general backbone conformation and metal-thiolate cluster geometry. Notably, bioassay results showed that the bioactivity of the K31/32A mutant and the K31/32E mutant decreased obviously, while the KKS-SP mutant lost inhibitory activity completely. Based on these results, we proposed that the KKS linker was a crucial factor in modulating the stability and the solvent accessibility of the Cd(3)S(9) cluster in the beta-domain through domain-domain interactions, thus was indispensable to the biological activity of hGIF.


Assuntos
Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Sequência de Aminoácidos , Animais , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Masculino , Metalotioneína 3 , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Estrutura Terciária de Proteína , Ratos , Ratos Wistar , Homologia de Sequência de Aminoácidos
20.
J Biol Inorg Chem ; 12(8): 1173-9, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17712581

RESUMO

Human metallothionein-3 (hMT3), also named human neuronal growth inhibitory factor (hGIF), is attractive due to its distinct neuronal growth inhibitory activity, which is not shown by other human MT isoforms. It has been reported that the neuronal growth inhibitory activity arises from the N-terminal beta-domain rather than its C-terminal alpha-domain. However, previous bioassay results have shown that the single beta-domain is less effective at inhibiting the neuron growth than that in intact hMT3 on a molar basis, which suggests that the alpha-domain is indispensable to the neuronal growth inhibitory activity of hMT3. In order to confirm this assumption, we constructed two domain-hybrid mutants, the beta(MT3)-beta(MT3) mutant and the beta(MT3)-alpha(MT1) mutant, and investigated their structural and metal binding properties by UV-vis spectroscopy, CD spectroscopy, pH titration, DTNB reaction, EDTA reaction, etc. The results showed that stability of the Cd(3)S(9) cluster of the beta(MT3)-beta(MT3) mutant decreased significantly while the Cd(3)S(9) cluster of the beta(MT3)-alpha(MT1) mutant had a similar stability and solvent accessibility to that of hMT3. Interestingly, the bioassay results showed that the neuronal growth inhibitory activity of the beta(MT3)-beta(MT3) mutant decreased significantly, while the beta(MT3)-alpha(MT1) mutant showed similar inhibitory activity to hMT3. Based on these results, we conclude that the alpha-domain is indispensable and plays an important role in modulating the stability of the metal cluster in the beta-domain by domain-domain interactions, thus influencing the bioactivity of hMT3.


Assuntos
Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Sequência de Aminoácidos , Animais , Células Cultivadas , Humanos , Metalotioneína/química , Metalotioneína/genética , Metalotioneína/metabolismo , Metalotioneína 3 , Dados de Sequência Molecular , Mutação , Proteínas do Tecido Nervoso/genética , Neurônios/efeitos dos fármacos , Estrutura Terciária de Proteína/genética , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...