Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Environ Pollut ; 337: 122529, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37690468

RESUMO

Microbial community, as the decomposers of constructed wetland (CW), plays crucial role in biodegradation and biotransformation of pollutants, nutrient cycling and the maintenance of ecosystem balance. In this study, 9 water samples, 6 sediment samples, and 8 plant samples were collected in Annan CW, which has the functions of water treatment and wetland culture park. The characteristics of microbial community structure in different media were illustrated by using of high-throughput sequencing-based metagenomics approach and statistical analysis. Meanwhile, this study identified and classified human pathogens in CW to avoid potential risks to human health. The results showed that dominant bacteria phyla in CW include Proteobacteria, Bacteroides, Actinobacteria, Firmicutes and Verrucomicrobia. The distribution of microorganisms in three media is different, but not significant. And the pH and DO profoundly affected microbe abundance, followed by water temperature. The microbial diversity in sediments is the highest, which is similar with the detection of human pathogens in sediments. Moreover, compared with Calamus, Lythrum salicaria and Reed, Scirpus tabernaemontani has fewer pathogenic microorganisms. The distribution of microorganisms in the CW is complex, and a variety of human pathogens are detected, which is more prone to create potential risks to human health and should receive additional attention.


Assuntos
Microbiota , Áreas Alagadas , Humanos , Pequim , Bactérias/genética , China
2.
J Environ Manage ; 346: 118947, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37699289

RESUMO

Combined remediation technologies are increasingly being considered to uranium contaminated groundwater, such as the joint utilize of permeable reactive bio-barrier (Bio-PRB) and electrokinetic remediation (EKR). While the assessment of uranium plume evolution in the combined remediation system (CRS) have often been impeded by insufficient understanding of multi-physical field superposition. Therefore, advanced knowledge in multi-physical field coupling in groundwater flow will be crucial to the practical application of these techniques. A two-dimensional multi-physical field coupling model was constructed for predicting the uranium degradation in CRS. The study demonstrates that the coupling model is able to predict the uranium plume evolution and rapidly evaluate the performance of CRS components. The results show that field electric direction and flow field strength are the key factors that affect the retardation and remediation performance of CRS. The reverse electric field direction significantly affected the contact reaction time of uranium in the system. The uranium residence time in the reverse electric field was 3.8 d, which was significantly greater than the original electric field (2.0 d). Depending on the voltage, the reverse electric field direction was 16%-36% more efficient than the original direction. The strength of the flow field was about two orders of magnitude higher than that of the electric field, so the groundwater flow rate dominated remediation efficiency. Reducing the flow rate by 1/2 could improve the performance of the system by approximately 66%. In addition, the coupling model can be utilized to design standard CRS for real site of uranium contaminated groundwater. To meet the optimal performance, the direction of the electric field should be set opposite to the flow field. This work has successfully used a coupling model to predict uranium contaminant-plume evolution in CRS and estimate the performance of each component.

3.
Sci Total Environ ; 904: 167337, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37748612

RESUMO

A new innovative methodology system framework for source apportionment and source-specific risk assessment has been proposed and actively applied to identify the contamination characteristics, oriented sources and health risks associated with contamination levels of Heavy metals (HMs) and Polycyclic Aromatic Hydrocarbons (PAHs) in soils, a typical cold agricultural region in Northeastern China. To achieve this meaningful goal, a large-scale dataset including 1780 top soil samples, 10 HMs and 16 priority PAHs has been organized and collected from a typical study area in China. The total concentrations of the 10 selected HMs in study area range from 0.05 to 2147.40 mg/kg, with an average of 549.25 ± 541.37 mg/kg. The average concentrations of PAHs for (3-6)-rings are 16.60 ± 18.90, 26.40 ± 28.20, 9.51 ± 13.00 and 1.99 ± 5.30 ng/g, respectively. On the base of optimized literature source fingerprints for HM and PAH, a widely used receptor model, positive matrix factorization (PMF) has been applied to apportion the contamination sources HMs and PAHs in soils. Then source-specific health risk of soil HMs and PAHs have been assessed using the probabilistic incremental lifetime cancer risk model incorporated with source apportionment results data. Fertilizer residues/coke oven comprise the primary contamination source contributors of HMs and PAHs with corresponding contributions of 32.23 % and 27.93 % for HMs and 37.94 % for PAHs. Fertilizer/pesticide residues contributes most to the risks of soil HMs (28.8 %), followed by fossil fuel combustion (24.6 %), mining activities (20.2 %), traffic and vehicle emission (16.3 %) and electroplating/dyeing (14.1 %). Meanwhile, the ranking of health risks from the five identified contamination sources of soil PAHs are resident discharge, coal-fired boilers, coke oven emission, gasoline combustion and power plant, with the contribution of 27.1 %, 25.3 %, 17.3 %, 15.5 % and 14.8 %. And relatively, source-specific risk assessment demonstrates fossil fuel and coal combustion contribute the greatest impact to the total risk of HMs and PAHs (61.7 % and 56.1 %), respectively. This study provides a good example of how the source specific health risk assessment can be utilized to reduce the contamination in soils.


Assuntos
Coque , Metais Pesados , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Solo/química , Coque/análise , Monitoramento Ambiental/métodos , Hidrocarbonetos Policíclicos Aromáticos/análise , Fertilizantes , Poluentes do Solo/análise , Carvão Mineral/análise , China , Medição de Risco/métodos
4.
Sci Total Environ ; 896: 165140, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37391144

RESUMO

Hyporheic zone (HZ) systems have a natural purification capacity, and they are commonly used to provide high quality drinking water. However, the presence of organic contaminants in HZ systems in anaerobic environments causes the aquifer sediments to release metals (e.g., Fe) at levels above drinking water standards, which affects the quality of groundwater. In this study, the effects of typical organic pollutants (dissolved organic matter (DOM)) on Fe release from anaerobic HZ sediments were investigated. Ultraviolet fluorescence spectroscopy, three-dimensional excitation-emission matrix fluorescence spectroscopy, excitation-emission matrix spectroscopy coupled with parallel factor analysis and Illumina MiSeq high-throughput sequencing were used to determine the effects of the system conditions on Fe release from HZ sediments. Compared with the control conditions (low traffic and low DOM as a baseline), the Fe release capacity was enhanced by 26.7 % and 64.4 % at low flow rate (85.8 m/d) and high organic matter concentration (1200 mg/L), which was consistent with the residence-time effect. The transport of heavy metals under different system conditions varied with the influent organic composition. The influent organic matter composition and fluorescence parameters (the humification index, biological index and fluorescence index) were closely related to the release of the Fe effluent, while these factors had less influence on Mn and As. From 16S rRNA analysis of the aquifer media at different depths at the end of the experiment, under low flow rate and high influent concentration conditions, reduction of Fe minerals by Proteobacteria, Actinobacteriota, Bacillus, and Acidobacteria promoted the release of Fe. These functional microbes play an active role in the Fe biogeochemical cycle in addition to reducing Fe minerals to promote Fe release. In summary, this study reveals the effects of the flow rate and influent DOM concentration on the release and biogeochemistry of Fe in the HZ. The results presented herein will contribute to a better understanding of the release and transport of common groundwater contaminants in the HZ and other groundwater recharge environments.


Assuntos
Água Potável , Água Subterrânea , Metais Pesados , Poluentes Químicos da Água , Matéria Orgânica Dissolvida , Água Potável/análise , RNA Ribossômico 16S , Metais Pesados/análise , Água Subterrânea/química , Poluentes Químicos da Água/análise
5.
Aquat Toxicol ; 258: 106510, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37003012

RESUMO

Tri(1,3-dichloropropyl) phosphate (TDCPP) is widespread in the environment as a typical thyroid hormone-disrupting chemical. Here, we aimed to explore the toxicological mechanisms of the thyroid hormone-disrupting effects induced by TDCPP in zebrafish embryos/larvae using multi-omics analysis. The results showed that TDCPP (400 and 600 µg/L) induced phenotypic alteration and thyroid hormone imbalance in zebrafish larvae. It resulted in behavioral abnormalities during zebrafish embryonic development, suggesting that this chemical might exhibit neurodevelopmental toxicity. Transcriptomic and proteomic analysis provided consistent evidence at the gene and protein levels that neurodevelopmental disorders were significantly enhanced by TDCPP exposure (p < 0.05). Additionally, multi-omics data indicated that membrane thyroid hormone receptor (mTR)-mediated non-genomic pathways, including cell communication (ECM-receptor interactions, focal adhesion, etc.) and signal transduction pathways (MAPK signaling pathway, calcium signaling pathway, neuroactive ligand-receptor interaction pathway, etc.), were significantly disturbed (p < 0.05) and might contribute to the neurodevelopmental toxicity induced by TDCPP. Therefore, behavioral abnormalities and neurodevelopmental disorders might be important phenotypic characteristics of TDCPP-induced thyroid hormone disruption, and mTR-mediated non-genomic networks might participate in the disruptive effects of this chemical. This study provides new insights into the toxicological mechanisms of TDCPP-induced thyroid hormone disruption and proposes a theoretical basis for risk management of this chemical.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Compostos Organofosforados/toxicidade , Multiômica , Proteômica , Poluentes Químicos da Água/toxicidade , Hormônios Tireóideos/metabolismo , Fosfatos/metabolismo
6.
Chemosphere ; 320: 138054, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36739984

RESUMO

Methyl parathion (MP) is a typical organophosphorus pesticide that is widely used worldwide, and hydrolysis, oxidation and reduction are the main abiotic degradation processes. Manganese dioxide (MnO2) and organic acid can participate in various geochemical processes of pollutants, a reaction system was constructed to degrade MP using δ-MnO2 and oxalic acid. The δ-MnO2/oxalic acid reaction system could efficiently degrade MP, and the removal rate of MP (20 µM) reached 67.83% within 30 h under the optimized conditions (pH 5, [δ-MnO2] = 2 mM, [oxalic acid] = 100 mM). MP was hydrolyzed by substitution reactions of SN@P and SN@C, and reduced by conversion of the nitro groups (-NO2) in MP and its hydrolysates to amino groups (-NH2). The primary active substance produced in the reaction system was the complexes dominated by Mn(III)-oxalic acid. This study provides a scientific basis for the degradation of organophosphorus pesticides using MnO2 and an organic acid. The results have important theoretical significance and application value for pollution control and remediation of organophosphorus pesticides.


Assuntos
Metil Paration , Praguicidas , Metil Paration/química , Óxidos/química , Compostos Organofosforados , Praguicidas/análise , Ácido Oxálico , Compostos de Manganês/química , Oxirredução , Cinética
7.
J Environ Manage ; 329: 117058, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36528944

RESUMO

Aquatic sediment polluted by potentially toxic elements (PTEs) from mining activities represents a potential health "time bomb" for humans and the local ecology, but the integrated analysis of pollution and hazards of PTEs in sediment around typical metal mines in China is limited. Presently, the associated pollution status, spatial distribution, and ecological and health hazards of Cd, Cu, Zn, Pb, Cr, and As were investigated through index evaluation, spatial analysis, health risk assessment models, and Monte Carlo simulation. Overall, the sediment exhibited varying degrees of PTE contamination; notably, the level of Cd was 104.85 times higher than its background value, and it became the most enriched element in the surveyed sediment, followed in descending order by Cu, As, Zn, Pb, and Cr. Nationally, over 64.5% of metal-mining-affected sediment presented a very high ecological risk, contributed mostly by Cd (43.2%-98.7%) followed by As, Pb, and Cu; the risk contributed by both Cr and Zn was found to be negligible. The adverse health risk posed to children by most sediment was 1.72 and 6.46 times higher than that posed to adults for cancerous and noncancerous risks, respectively. The potential noncarcinogenic risks were mainly caused by As, which contributed over 78.9% of the Hazard Index values, then followed by Pb (>9.3%). For both children and adults, the carcinogenic risk of PTEs decreased in the following order: As > Cd > Cr > Pb. The investigated sediment was found seriously affected by nearby metal mines, especially those in regions with long-term and large-scale nonferrous-metal-mining activities. This study could provide a reference for policymakers to develop control strategies for PTE pollution in sediment around mining areas.


Assuntos
Metais Pesados , Poluentes do Solo , Criança , Adulto , Humanos , Metais Pesados/análise , Monitoramento Ambiental , Cádmio , Chumbo , Solo , Poluentes do Solo/análise , China , Medição de Risco
8.
Sci Total Environ ; 860: 160513, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36442629

RESUMO

Antimicrobial resistance (AMR) is one of the significant global issues to public health. Compared to other aquatic environments, research on AMR in groundwater is scarce. In the study, a meta-analysis was conducted to explore the characteristics and risks of antibiotics and antibiotic resistance genes (ARGs) in global groundwater, using a data set of antibiotic concentrations collected from publications during 2000-2021 and a large-scale metagenomes of groundwater samples (n = 330). The ecotoxicological risks of antibiotics in the global groundwater were evaluated using mixture risk quotient with concentration addition model to consider the synergistic effects of multiple antibiotics. Bioinformatic annotations identified 1413 ARGs belonging to 37 ARG types in the global groundwater, dominated by rifamycin, polyketide, and quinolone resistance genes and including some emerging ARGs such as mcr-family and carbapenem genes. Relatively, the level of ARGs in the groundwater from spring was significantly higher (ANOVA, p < 0.01) than those from the riparian zone, sand and deep aquifer. Similarly, metal resistance genes (MRGs) were prevalent in the global groundwater, and network analysis suggested the MRGs presented non-random co-occurrence with the ARGs in such environments. Taxonomic annotations showed Proteobacteria, Actinobacteria, Eukaryota, Acidobacteria and Thaumarchaeota were the dominant phylum in the groundwater, and the microbial community largely shaped profile of ARGs in the environment. Notably, the ARGs presented co-occurrence with mobile genetic elements, virulence factors and human bacterial pathogens, indicating potential dissemination risk of ARGs in the groundwater. Furthermore, an omics-based approach was used for health risk assessment of antibiotic resistome and screened out 152 risk ARGs in the global groundwater. Comparatively, spring and cold creek presented higher risk index, which deserves more attention to ensure the safety of water supply.


Assuntos
Antibacterianos , Água Subterrânea , Humanos , Antibacterianos/farmacologia , Genes Bacterianos , Resistência Microbiana a Medicamentos/genética , Bactérias/genética , Água Subterrânea/microbiologia
9.
J Environ Sci (China) ; 127: 421-430, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36522074

RESUMO

Lakes act as one of the reservoirs and dispersal routes of antibiotic resistance genes (ARGs) and pathogenic resistant bacteria in aquatic environments. Previous studies reported the occurrence and distribution of ARGs in lakes worldwide; however, few investigated the biogeography and diversity patterns of antibiotic resistome in the environment. To fill this gap, a large-scale data set of sediment metagenomes was collected from globally distributed lakes and characterized comprehensively using metagenomic assembly-based analysis, aiming to shed light on the biogeography and diversity patterns of ARGs in lake ecosystems from a global perspective. Our analyses showed that abundant and diverse ARGs were found in the global lake sediments, including a set of emerging ARGs such as mcr-type and carbapenem-resistant Enterobacteriaceae related genes. Most of the identified ARGs were generally associated with the commonly used antibiotics, suggesting the role of increasing antibiotic consumptions on the resistome prevalence. Spatially, the composition and diversity of ARGs varied across geographical distances and exhibited a scale-dependent distance-decay relationship. Notably, the composition of ARGs was largely shaped by bacterial community structure, and their diversities were co-governed by stochastic process (∼48%) and deterministic process (∼52%). Findings provide a valuable insight to better understand ecological mechanisms of ARGs in lake ecosystems and have important implication for the prevention and control of resistome risk.


Assuntos
Antibacterianos , Lagos , Lagos/microbiologia , Antibacterianos/farmacologia , Genes Bacterianos , Ecossistema , Resistência Microbiana a Medicamentos/genética
10.
J Hazard Mater ; 442: 130116, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36209606

RESUMO

A metagenomics-based technological framework has been proposed for evaluating the potential and utility of FEAST as an ARG profile-based source apportionment tool. To this end, a large panel of metagenomic data sets was analyzed, associating with eight source types of ARGs in environments. Totally, 1089 different ARGs were found in the 604 source metagenomes, and 396 ARG indicators were identified as the source-specific fingerprints to characterize each of the source types. With the source fingerprints, predictive performance of FEAST was checked using "leave-one-out" cross-validation strategy. Furthermore, artificial sink communities were simulated to evaluate the FEAST for source apportionment of ARGs. The prediction of FEAST showed high accuracy values (0.933 ± 0.046) and specificity values (0.959 ± 0.041), confirming its suitability to discriminate samples from different source types. The apportionment results reflected well the expected output of artificial communities which were generated with different ratios of source types to simulate various contamination levels. Finally, the validated FEAST was applied to track the sources of ARGs in river sediments. Results showed STP effluents were the main contributor of ARGs, with an average contribution of 76 %, followed by sludge (10 %) and aquaculture effluent (2.7 %), which were basically consistent with the actual environment in the area.


Assuntos
Antibacterianos , Metagenômica , Metagenômica/métodos , Antibacterianos/farmacologia , Esgotos , Resistência Microbiana a Medicamentos/genética , Rios , Genes Bacterianos
11.
Environ Res ; 216(Pt 1): 114430, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36181893

RESUMO

Riverbank filtration (RBF) constitutes an important part of the water cycle, which involves active natural filtration leading to pollution of river water being intercepted and retained. The RBF has the function of water purification, but retention of exogenous pollutants in the RBF system complicates biogeochemical processes due to the presence of primary active components. In this study, we verified the essential role of microbial mediation during the interactions between primary Fe minerals in the RBF system and dissolved organic matter (DOM) in river water based on lab-scale experiments. The results demonstrated that DOM from infiltration of river water increased the amount of iron (Fe) released from the sediment in RBF, leading to an increase in Fe concentration in groundwater by higher than one order of magnitude. In particular, the existence of Fe bacteria even made this effect more thorough and more complex. Abiotic reduction was shown to play a more significant role in increasing Fe release than microbe-mediated reduction. Increasing the amount of Fe released could change the distribution of Fe minerals at the sediment surface, thereby affecting the structure of the microbial community in the RBF system and decreasing the DOM concentration in the groundwater. Moreover, As and Mn were found to behave in a similar manner as Fe due to their close biochemical properties when interacting with primary minerals in sediment. This study not only provides mechanistic insight into the higher Fe concentrations encountered in the groundwater of nearby rivers but also has important practical implications for developing nature-based technologies for water pollution control and environmental remediation.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Matéria Orgânica Dissolvida , Filtração/métodos , Rios/química , Água , Poluentes Químicos da Água/análise
12.
Ecotoxicol Environ Saf ; 248: 114347, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36455350

RESUMO

As a green technology, constructed wetlands (CWs) can provide a low-cost solution for wastewater treatment. Either as a standalone treatment or integrated with conventional treatment, nutrients, antibiotic resistant bacteria (ARB)/antibiotic resistance genes (ARGs) can be removed by CW efficiently. While, few studies have focused on characteristics of resistome and bacterial community (BC) structure in CW during dormant period. Therefore, in this study, Annan CW (a full-scale hybrid CW) was selected to characterize resistome and BC during dormant period. The profiles of bacteria / ARGs were monitored in combination of shotgun sequencing and metagenomic assembly analysis. And multidrug ARGs are the most abundant in Annan CW, and surface flow wetland had the relatively high ARG diversity and abundance compared with subsurface flow wetland and the front pond. The most dominant phylum in CW is Proteobacteria, while the other dominant phylum in three parts have different order. COD, TP, TN, ARGs, and mobile genetic genes (MGEs) were removed by subsurface flow CW with better performance, but virulent factors (VFs) were removed by surface flow CW with better performance. Based on the spatiotemporal distribution of ARGs, the internal mechanism of ARGs dynamic variation was explored by the redundancy analysis (RDA) and variation partitioning analysis (VPA). BCs, MGEs and environmental factors (EFs) were responsible for 45.6 %, 28.3 % and 15.4 % of the ARGs variations. Among these factors, BCs and MGEs were the major co-drivers impacting the ARG profile, and EFs indirectly influence the ARG profile. This study illustrates the specific functions of ARG risk elimination in different CW components, promotes a better understanding of the efficiency of CWs for the reduction of ARG and ARB, contributing to improve the removal performance of constructed wetlands. And provide management advice to further optimize the operation of CWs during dormant period.


Assuntos
Antagonistas de Receptores de Angiotensina , Áreas Alagadas , Inibidores da Enzima Conversora de Angiotensina , Lagoas , Proteobactérias
13.
Ecotoxicol Environ Saf ; 244: 114070, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36099687

RESUMO

Due to extensive water exchanges and abundant active biochemical compositions, active and complex hydrogeochemical processes often exist in riverbank filtration (RBF). The distribution of microbes is considered to be profoundly affected by these processes and is considered to impact the hydrogeochemical processes and the migration and transformation of water pollutants in turn and then impact the water quality. The distribution of microbes and their response to the physiochemical properties along a vertical RBF profile perpendicular to the Songhua River in Northeast China was explored by using 16 S rRNA and redundancy analysis (RDA). The results showed that various microbes were found in the vertical riparian filter (RBF) curve, including Actinobacteria, Proteobacteria, Acidobacteria, Chloroflexi, and Firmicutes. With increasing depth (vertical) and distance from the river (lateral), the microbial community and diversity in the RBF sediment profile decreased. Nitrospirota, Pseudomonas, Gammaproteobacteria, Ochrobactrum, Acinetobacter and Desulfobacterota of the RBF core taxa were also significantly correlated with the biotransformation behavior of typical groundwater pollutants (ammonia, Fe, Mn and S). The amount of As in the RBF is too low to sustain microbial survival. Some microbes in RBF can also degrade natural organic pollutants. This study not only revealed the spatial distribution of geological microbes under the impact of hydrological processes but also lays a foundation for the further study of the hydrobiogeochemical processes of active biochemical compositions in groundwater and water quality evolution, which is of positive significance to ensure the quality safety of the drinking water supplied by RBFs.


Assuntos
Água Potável , Água Subterrânea , Poluentes Químicos da Água , Poluentes da Água , Amônia/análise , Água Potável/análise , Filtração/métodos , Água Subterrânea/química , Rios/química , Poluentes da Água/análise , Poluentes Químicos da Água/análise
14.
Water Res ; 224: 119061, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36096031

RESUMO

The effluents of sewage treatment plants (eSTP) are one of the critical contributors of antibiotic resistiome in rivers. Recently, community coalescence has been focused as the entire microbiome interchanges with one another. While works have reported the prevalence of antibiotic resistance genes (ARGs) in eSTP and their effects on river resistome, little research has investigated the extent of resistome coalescence in the environment. In the study, we have addressed the issue and focused on the resistome coalescence of eSTP in an urban river with a typical effluent/river coalescence model, by utilizing high-throughput sequencing (HTS)-based metagenomic assembly analysis. In all, a total of 609 ARGs were found in the eSTP-river system, conferring resistance to 30 antibiotic classes and including some emerging ARGs such as mcr-type, tetX and carbapenemase genes. Statistical analyses including linear discriminant analysis effect size (LEfSe) showed the coalescence of STP effluents increased the diversity and abundance of river resistome, indicating its low resistance to disturb the invasion of resistome community in eSTP. After coalescence in the river, the imprints of STP-derived ARGs presented a temporary increase and gradually decreased trend along the flow path. Further, an innovative fast expectation-maximization microbial source tracking (FEAST) method was used to quantitatively apportion the coalescence event, and demonstrated the contribution of eSTP on river resistome and its attenuation dynamics in the downstream. Notably, correlation-based network analysis and contig-based co-occurrence analysis showed the coalesced resistome in the downstream river co-occurred with human bacterial pathogens, mobile genetic elements and virulence factor genes, indicating potential resistome dissemination risk in the environment. This study provides more profound understanding of resistome coalescence between engineered and natural contexts, which is helpful for optimizing strategies to prevent and control resistome risk in aquatic environment.


Assuntos
Genes Bacterianos , Esgotos , Antibacterianos , Humanos , Rios/microbiologia , Esgotos/microbiologia , Fatores de Virulência
15.
J Environ Manage ; 321: 115934, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35998534

RESUMO

An analytical algorithm coupling free-phase migration, precipitation, and natural attenuation through volatilization and biodegradation (FPVB) was developed to calculate the flux of light nonaqueous-phase liquid (LNAPL) leaking from unsaturated zone to groundwater. Sandbox and soil column experiments were performed to identify the LNAPL migration characteristics and states to provide data to establish and verify FPVB algorithm. For free-phase migration, the Kinematic Oily Pollutant Transport (KOPT) model was used to determine LNAPL movement velocity and leakage time. The correlations of water saturation, residual LNAPL saturation and the cumulative dissolution ratio of residual LNAPL were described using an empirical formula for the precipitation leaching process. Equations for diesel volatilization kinetics and first order degradation were used to describe the natural attenuation processes. Coupling the algorithms for the different stages gave the final FPVB algorithm. The FPVB algorithm was used to describe the pollution situation at a real site, and the results were consistent with the actual situation. The FPVB algorithm could be used to quickly assess the scale and degree of pollution with little information on the parameters for the actual LNAPL leakage event.


Assuntos
Água Subterrânea , Movimentos da Água , Algoritmos , Biodegradação Ambiental , Solo
16.
Phys Chem Chem Phys ; 24(28): 17163-17173, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35792077

RESUMO

With the ongoing development and utilization of nuclear energy, uranium pollution has become an increasingly serious issue. Although many adsorbents are able to remove hexavalent uranium (U(VI)) from aqueous solution, the development of a high capacity adsorbent exhibiting superior stability would be beneficial. Grafting poly(amidoxime) (PAO) onto reduced graphene oxide (rGO) provides suitable U(VI) adsorption performance but the PAO is prone to agglomeration. The present work used density functional theory calculations to predict that PAO would bond with pyrrolic N atoms in nitrogen-doped rGO (N-rGO). To confirm this, PAO-grafted rGO (PAO-rGO) and PAO-grafted N-rGO (PAO-N-rGO) were prepared and characterized and the successful grafting of PAO on N-rGO was demonstrated. Adsorption experiments demonstrated that PAO-N-rGO exhibit superb U(VI) adsorption performance compared with the original PAO-rGO under acidic conditions. As for competing metal ions, Cu2+, Al3+, and Ca2+ have a greater impact on U(VI) adsorption than Na+, Mg2+, and K+ both for PAO-rGO and PAO-N-rGO. The maximum adsorption capacities of PAO-rGO and PAO-N-rGO for U(VI) were calculated to be 1500.26 and 1545.95 mg g-1, respectively. The mechanism of nitrogen doping promoting uranium(VI) adsorption can be attributed to enhanced PAO grafting and improvement of adsorption performance of the rGO. This work demonstrates that nitrogen doping is a viable strategy for enhancing the U(VI) adsorption performance of PAO-rGO.

17.
Artigo em Inglês | MEDLINE | ID: mdl-35805509

RESUMO

Peat-derived organic matter, as powerful chelators, is of great significance for the transport of Fe to the ocean and the enhancement of dissolved Fe. However, the iron binding capacity of molecular weight (MW)-fractionated dissolved organic matter is variable, due to its structure and composition heterogeneity. In this work, we used the standard Pahokee Peat fulvic acid (PPFA) as an example, and investigated the spectroscopy properties and Fe(III) binding ability of PPFA and different molecular weight fractions by UV−Vis absorbance and fluorescence spectroscopy and the Donnan Membrane Technique (DMT). The results showed binding sites for Fe(III) at the 263 nm and >320 nm regions in differential absorbance spectra. Upon increasing the iron concentration to 18.00 µmol·L−1, the critical binding capacity was exceeded, which resulted in a decrease in absorbance. Fe(III) was found to prefer to bind to humic-like components, and ultraviolet humic-like fluorophores displayed stronger binding strength. High molecular weight PPFA fractions (>10 kDa) possessed more aromatic and hydrophobic components, displayed a higher degree of humification, and exhibited higher metal binding potential. Furthermore, the speciation analysis and stability constant (cK) were calculated using Donnan membrane equilibrium. The correlation between cK values and PPFA spectral properties demonstrated that aromaticity, hydrophobicity, molecular weight and humification degree were crucial indices of PPFA−Fe(III) affinity. Significantly, the humification degree, represented by HIX, showed the strongest correlation (r = 0.929, p = 0.003), which could be used to estimate the binding strength. This study provides further understanding of the complexation mechanism of iron and DOM in the peat environment and identifies the considerable effect of molecular weight.


Assuntos
Substâncias Húmicas , Solo , Benzopiranos , Compostos Férricos , Substâncias Húmicas/análise , Ferro/química , Peso Molecular , Solo/química , Espectrometria de Fluorescência
18.
Sci Total Environ ; 844: 157226, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-35809723

RESUMO

Currently, most researches focus on that constructed wetlands (CWs) achieve desirable removal of antibiotics, antibiotic resistance genes (ARGs) and human pathogens. However, few studies have assessed the fate of resistome components, especially the behavior and cooccurrence of ARGs, mobile genetic elements (MGEs) and virulence factors (VFs). Therefore, characteristics of microbial communities (MCs) in CWs and their receiving rivers also deserve attention. These factors are critical to water ecological security. This study used two CWs to explore the fate of resistome components and characteristics of MCs in the CWs and their receiving river. Eleven samples were collected from the two CWs and their receiving river. High-throughput profiles of ARGs and microbial taxa in the samples were characterized. 31 ARG types consisting of 400 subtypes with total relative abundance 42.63-84.94× /Gb of sequence were detected in CWs, and 62.07-88.08× /Gb of sequence in river, evidencing that ARG pollution covered CWs and the river, and implying huge potential risks from ARGs. MGEs and VFs were detected, and tnpA, IS91 and intI1 were the three dominant MGEs, while Flagella. Type IV pili and peritrichous flagella were main VFs. Both CWs can remove ARGs, MGEs and VFs efficiently. However, some ARGs were difficult to remove, such as sul1 and sul2, and certain ARGs remained in the effluent of the CWs. The co-occurrence of ARGs, MGEs, and VFs implies the risk of antibiotic resistance and dissemination of ARGs. Eighty-five types of human pathogen were detected in the river samples, particularly Pseudomonas aeruginosa, Bordetella bronchiseptica, Aeromonas hydrophila and Helicobacter pylori. Correlation analysis indicated that MCs had significant effects on the profiles of ARGs in the water environment. This study reveals potential risks of the reuse of reclaimed water, and illustrates the removal ability of ARGs and related elements by CWs. This study will be helpful for monitoring and managing resistomes in water environments.


Assuntos
Microbiota , Rios , Antibacterianos/análise , Genes Bacterianos , Humanos , Água/análise , Áreas Alagadas
19.
Sci Total Environ ; 838(Pt 3): 156426, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35660592

RESUMO

The reuse of urban reclaimed water is conducive to alleviate the current serious shortage of water resources. However, antibiotic resistance genes (ARGs) in reclaimed water have received widespread attention due to their potential risks to public health. Deciphering the fate of ARGs in reclaimed water benefits the development of effective strategies to control resistome risk and guarantees the safety of water supply of reclaimed systems. In this study, the characteristics of ARGs in an integrated reclaimed water system (sewage treatment plant-constructed wetland, STP-CW) in Beijing (China) have been identified using metagenomic assembly-based analysis, as well as the combined effect of the STP-CW system on the reduction of antibiotic resistome. Results showed a total of 29 ARG types and 813 subtypes were found in the reclaimed water system. As expected, the STP-CW system improved the removal of ARGs, and about 58% of ARG subtypes were removed from the effluent of the integrated STP-CW system, which exceeded 43% for the STP system and 37% for the CW system. Although the STP-CW system had a great removal on ARGs, abundant and diverse ARGs were still found in the downstream river. Importantly, network analysis revealed the co-occurrence of ARGs, mobile genetic elements and virulence factors in the downstream water, implying potential resistome dissemination risk in the environment. Source identification with SourceTracker showed the STP-effluent was the largest contributor of ARGs in the downstream river, with a contribution of 45%. Overall, the integrated STP-CW system presented a combined effect on the reduction of antibiotic resistome, however, the resistome dissemination risk was still non-negligible in the downstream reclaimed water. This study provides a comprehensive analysis on the fate of ARGs in the STP-CW-river system, which would benefit the development of effective strategies to control resistome risk for the reuse of reclaimed water.


Assuntos
Antibacterianos , Genes Bacterianos , Antibacterianos/análise , Resistência Microbiana a Medicamentos/genética , Metagenômica/métodos , Água
20.
Sci Total Environ ; 836: 155725, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35526625

RESUMO

Exploring the relationships between heavy metal release and salinity can help address the problems of combination of toxic heavy metals and salinization in contaminated soils. Therefore, in this study, the release characteristics of heavy metals (Cd, Cu and Zn) under different salt types and mass concentrations were investigated through batch desorption experiments. Spearman's correlation analysis was performed to assess the effects of typical physicochemical properties on metal release under salt stress. The results indicated that the types and concentration gradients of salt had notably different impacts on the release of different metals; specifically, there were significant impacts for Cd but slight impacts for Cu and Zn. MgCl2 and CaCl2 had more obvious promoting effects on Cd release, followed by a salt mixture and NaCl, and this pattern was similar for Zn release. Most salts could slightly restrain the release of Cu, except for MgCl2 and Na2SO4, which had slight promoting effects. Moreover, low levels of CaCl2 could effectively restrain the release of Cu. The results showed that the release capacities of metals followed the order of Cd > Cu > Zn, possibly attributed to the competitive adsorption among cations. Ferromanganese oxides in the soil favored the release of Cd and Zn under salt treatments, and redox potential was an important factor affecting Cu release. The results also suggested that the background values of metals could affect metal release, but the effects were varied under different salt treatments for Zn. The reason for this may be that the addition of different salts changed the effects of certain soil properties on the metal release. Overall, this study can serve as an important reference for controlling heavy metal pollution in soils in salinization and coastal areas.


Assuntos
Metais Pesados , Poluentes do Solo , Cádmio/análise , Cloreto de Cálcio , China , Monitoramento Ambiental , Metais Pesados/análise , Salinidade , Sais , Solo/química , Poluentes do Solo/análise , Zinco/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...