Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Radiat Oncol ; 16(1): 221, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789300

RESUMO

PURPOSE/OBJECTIVE(S): To communicate our institutional experience with single isocenter radiosurgery treatments for multiple brain metastases, including challenges with determining planning target volume (PTV) margins and resulting consequences, image-guidance translational and rotational tolerances, intra-fraction patient motion, and prescription considerations with larger PTV margins. MATERIALS/METHODS: Eight patient treatments with 51 targets were planned with various margins using Elements Multiple Brain Mets SRS treatment planning software (Brainlab, Munich, Germany). Forty-eight plans with 0 mm, 1 mm and 2 mm margins were created, including plans with variable margins, where targets more than 6 cm away from the isocenter were planned with larger margins. The dosimetric impact of the margins were analyzed with V5Gy, V8Gy, V10Gy, V12Gy values. Additionally, 12 patient motion data were analyzed to determine both the impact of the repositioning threshold and the distributions of the patient translational and rotational movements. RESULTS: The V5Gy, V8Gy, V10Gy, V12Gy volumes approximately doubled when margins change from 0 to 1 mm and tripled when change from 0 to 2 mm. With variable margins, the aggregated results are similar to results from plans using the lower of two margins, since only 12.2% of the targets were more than 6 cm away from the isocenter. With 0.5 mm re-positioning threshold, 57.4% of the time the patients are repositioned. Reducing the threshold to 0.25 mm results in 91.7% repositioning rate, due to limitations of the fusion algorithm and actual patient motion. The 90th percentile of translational movements in all directions is 0.7 mm, while the 90th percentile of rotational movements in all directions is 0.6 degrees. Median translations and rotations are 0.2 mm and 0.2 degrees, respectively. CONCLUSIONS: Based on the data presented, we have switched our modus operandi from 2 to 1 mm PTV margins, with an eventual goal of using 0.5 and 1.0 mm variable margins when an automated margin assignment method becomes available. The 0.5 mm and 0.5 degrees repositioning thresholds are clinically appropriate with small residual patient movements.


Assuntos
Algoritmos , Neoplasias Encefálicas/cirurgia , Margens de Excisão , Imagens de Fantasmas , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Cirurgia Assistida por Computador/métodos , Neoplasias Encefálicas/patologia , Humanos , Movimento , Órgãos em Risco/efeitos da radiação , Prognóstico , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos
2.
Radiol Imaging Cancer ; 3(2): e200075, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33817649

RESUMO

Radiation oncology practices use a suite of dedicated software and hardware that are not common to other medical subspecialties, making radiation treatment history inaccessible to colleagues. A radiation dose distribution map is generated for each patient internally that allows for visualization of the dose given to each anatomic structure volumetrically; however, this crucial information is not shared systematically to multidisciplinary medical, surgery, and radiology colleagues. A framework was developed in which dose distribution volumes are uploaded onto the medical center's picture archiving and communication system (PACS) to rapidly retrieve and review exactly where, when, and to what dose a lesion or structure was treated. The ability to easily visualize radiation therapy information allows radiology clinics to incorporate radiation dose into image interpretation without direct access to radiation oncology planning software and data. Tumor board discussions are simplified by incorporating radiation therapy information collectively in real time, and daily onboard imaging can also be uploaded while a patient is still undergoing radiation therapy. Placing dose distribution information into PACS facilitates central access into the electronic medical record and provides a succinct visual summary of a patient's radiation history for all medical providers. More broadly, the radiation dose map provides greater visibility and facilitates incorporation of a patient's radiation history to improve oncologic decision making and patient outcomes. Keywords: Brain/Brain Stem, CNS, MRI, Neuro-Oncology, Radiation Effects, Radiation Therapy, Radiation Therapy/Oncology, Radiosurgery, Skull Base, Spine, Technology Assessment Supplemental material is available for this article. © RSNA, 2021 See also commentary by Khandelwal and Scarboro in this issue.


Assuntos
Registros Eletrônicos de Saúde , Sistemas de Informação em Radiologia , Humanos , Imageamento por Ressonância Magnética , Doses de Radiação , Software
3.
Surg Neurol Int ; 3: 73, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22937474

RESUMO

PURPOSE: To retrospectively review the efficacy and safety of image-guided linear accelerator-based radiosurgery for spinal hemangioblastomas. METHODS: Between August 2004 and September 2010, nine patients with 20 hemangioblastomas underwent spinal radiosurgery. Five patients had von Hipple-Lindau disease. Four patients had multiple tumors. Ten tumors were located in the thoracic spine, eight in the cervical spine, and two in the lumbar spine. Tumor volume varied from 0.08 to 14.4 cc (median 0.72 cc). Maximum tumor dimension varied from 2.5 to 24 mm (median 10.5 mm). Radiosurgery was performed with a dedicated 6 MV linear accelerator equipped with a micro-multileaf collimator. Median peripheral tumor dose and prescription isodose were 12 Gy and 90%, respectively. Image guidance was performed by optical tracking of infrared reflectors, fusion of oblique radiographs with dynamically reconstructed digital radiographs, and automatic patient positioning. Follow-up varied from 14 to 86 months (median 51 months). RESULTS: Kaplan-Meier estimated 4-year overall and solid tumor local control rates were 90% and 95%, respectively. One tumor progressed 12 months after treatment and a new cyst developed 10 months after treatment in another tumor. There has been no clinical or imaging evidence for spinal cord injury. CONCLUSIONS: Results of this limited experience indicate linear accelerator-based radiosurgery is safe and effective for spinal cord hemangioblastomas. Longer follow-up is necessary to confirm the durability of tumor control, but these initial results imply linear accelerator-based radiosurgery may represent a therapeutic alternative to surgery for selected patients with spinal hemangioblastomas.

4.
Surg Neurol ; 72(6): 668-74; discussion 674-5, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19608232

RESUMO

BACKGROUND: Stereotactic radiosurgery has proven a safe and effective treatment of cranial nerve sheath tumors. A similar approach should be successful for histologically identical spinal nerve sheath tumors. METHODS: The preliminary results of linear accelerator-based spinal radiosurgery were retrospectively reviewed for a group of 25 nerve sheath tumors. Tumor location was cervical 11, lumbar 10, and thoracic 4. Thirteen tumors caused sensory disturbance, 12 pain, and 9 weakness. Tumor size varied from 0.9 to 4.1 cm (median, 2.1 cm). Radiosurgery was performed with a 60-MV linear accelerator equipped with a micro-multileaf collimator. Median peripheral dose and prescription isodose were 12 Gy and 90%, respectively. Image guidance involved optical tracking of infrared reflectors, fusion of amorphous silicon radiographs with dynamically reconstructed digital radiographs, and automatic patient positioning. Follow-up varied from 12 to 58 months (median, 18). RESULTS: There have been no local failures. Tumor size remained stable in 18 cases, and 7 (28%) demonstrated more than 2 mm reduction in tumor size. Of 34 neurologic symptoms, 4 improved. There has been no clinical or imaging evidence for spinal cord injury. One patient had transient increase in pain and one transient increase in numbness. CONCLUSIONS: Results of this limited experience indicate linear accelerator-based spinal radiosurgery is feasible for treatment of benign nerve sheath tumors. Further follow-up is necessary, but our results imply spinal radiosurgery may represent a therapeutic alternative to surgery for nerve sheath tumors. Symptom resolution may require a prescribed dose of more than 12 Gy.


Assuntos
Neurilemoma/cirurgia , Neoplasias do Sistema Nervoso Periférico/cirurgia , Radiocirurgia/instrumentação , Nervos Espinhais/cirurgia , Cirurgia Assistida por Computador/instrumentação , Adolescente , Adulto , Idoso , Feminino , Seguimentos , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/diagnóstico , Recidiva Local de Neoplasia/cirurgia , Neurilemoma/diagnóstico , Neurofibromatose 1/diagnóstico , Neurofibromatose 1/cirurgia , Neurofibromatose 2/diagnóstico , Neurofibromatose 2/cirurgia , Exame Neurológico , Neoplasias do Sistema Nervoso Periférico/diagnóstico , Complicações Pós-Operatórias/diagnóstico , Adulto Jovem
5.
Phys Med Biol ; 53(6): 1715-27, 2008 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-18367799

RESUMO

Image-guided frameless extracranial radiosurgery has become an established treatment option; however, without a frame to restrict patient movements, intrafraction field mispositioning becomes more probable. The primary aim of this study is to determine the intrafraction motion of spinal radiosurgery patients. This aim was approached in two steps. First, a phantom study demonstrated that the system can detect movements accurately within 0.1 mm and rotational changes within 0.2 degrees. Second, patient positioning and monitoring were carried out for a group of 15 patients with 20 treatment sites. For the patient pool in the study, vertebral anatomy movement was observed to vary as much as 3 mm between sequential measurements and could occur in as little as 5 min. These results suggest a need for intrafraction patient monitoring and correctional shifts, even for patients whose overall treatment times are expected to be relatively short. Small relative rotations with standard deviations of less than 1.5 degrees were observed. The small relative rotational movements observed do not, alone, justify patient monitoring using the image-guidance system during the treatments of generally small radiosurgical targets.


Assuntos
Fracionamento da Dose de Radiação , Movimento , Radiocirurgia/métodos , Neoplasias da Coluna Vertebral/radioterapia , Neoplasias da Coluna Vertebral/cirurgia , Cirurgia Assistida por Computador/métodos , Humanos , Imobilização , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador , Reprodutibilidade dos Testes , Neoplasias da Coluna Vertebral/fisiopatologia , Fatores de Tempo , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...