Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 43(2): 166-169, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-29328229

RESUMO

We demonstrate surface-plasmon lasing in hexagonal metal hole arrays with a semiconductor gain medium. The device can be tuned between two laser modes, with distinct wavelengths, spatial distributions, and polarization patterns, by changing the size of the optically pumped area. One of the modes exhibits a six-fold polarization pattern, while the mode observed for larger pump spots has a rotationally symmetric polarization pattern. We explain the mode tuning by the differences of in-plane and radiative out-of-plane losses of the modes. The spatial and polarization properties of the modes are conveniently described by a sum of vectorial orbital angular momentum beams with orbital, spin, and total angular momentum j=ℓ+s.

2.
Opt Express ; 24(26): 29624-29633, 2016 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-28059349

RESUMO

We present a systematic experimental study on the optical properties of plasmonic crystals (PlC) with hexagonal symmetry. We compare the dispersion and avoided crossings of surface plasmon modes around the Γ-point of Au-metal hole arrays with a hexagonal, honeycomb and kagome lattice. Symmetry arguments and group theory are used to label the six modes and understand their radiative and dispersive properties. Plasmon-plasmon interaction are accurately described by a coupled mode model, that contains effective scattering amplitudes of surface plasmons on a lattice of air holes under 60°, 120°, and 180°. We determine these rates in the experiment and find that they are dominated by the hole-density and not on the complexity of the unit-cell. Our analysis shows that the observed angle-dependent scattering can be explained by a single-hole model based on electric and magnetic dipoles.

3.
Opt Express ; 21(22): 27422-37, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-24216964

RESUMO

We experimentally study surface plasmon lasing in a series of metal hole arrays on a gold-semiconductor interface. The sub-wavelength holes are arranged in square arrays of which we systematically vary the lattice constant and hole size. The semiconductor medium is optically pumped and operates at telecom wavelengths (λ ~ 1.5 µm). For all 9 studied arrays, we observe surface plasmon (SP) lasing close to normal incidence, where different lasers operate in different plasmonic bands and at different wavelengths. Angle- and frequency-resolved measurements of the spontaneous emission visualizes these bands over the relevant (ω, k||) range. The observed bands are accurately described by a simple coupled-wave model, which enables us to quantify the backwards and right-angle scattering of SPs at the holes in the metal film.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...