Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 159(2)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37431911

RESUMO

The K-edge photoelectron and KLL Auger-Meitner decay spectra of Argon have been investigated computationally at the restricted active space perturbation theory to the second order level using biorthonormally transformed orbital sets. Binding energies were computed for the Ar 1s primary ionization, as well as for satellite states originated from shake-up and shake-off processes. Based on our calculations, the contributions of shake-up and shake-off states to the KLL Auger-Meitner spectra of Argon have been completely elucidated. Our results are compared with recent state-of-the-art experimental measurements on Argon.

2.
J Am Chem Soc ; 145(6): 3554-3560, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36735829

RESUMO

Tabletop X-ray spectroscopy measurements at the carbon K-edge complemented by ab initio calculations are used to investigate the influence of the bromine atom on the carbon core-valence transitions in the bromobenzene cation (BrBz+). The electronic ground state of the cation is prepared by resonance-enhanced two-photon ionization of neutral bromobenzene (BrBz) and probed by X-rays produced by high-harmonic generation (HHG). Replacing one of the hydrogen atoms in benzene with a bromine atom shifts the transition from the 1sC* orbital of the carbon atom (C*) bonded to bromine by ∼1 eV to higher energy in the X-ray spectrum compared to the other carbon atoms (C). Moreover, in BrBz+, the X-ray spectrum is dominated by two relatively intense transitions, 1sC→π* and 1sC*→σ*(C*-Br), where the second transition is enhanced relative to the neutral BrBz. In addition, a doublet peak shape for these two transitions is observed in the experiment. The 1sC→π* doublet peak shape arises due to the spin coupling of the unpaired electron in the partially vacant π orbital (from ionization) with the two other unpaired electrons resulting from the transition from the 1sC core orbital to the fully vacant π* orbitals. The 1sC*→σ* doublet peak shape results from several transitions involving σ* and vibrational C*-Br mode activations following the UV ionization, which demonstrates the impact of the C*-Br bond length on the core-valence transition as well as on the relaxation geometry of BrBz+.

3.
J Chem Phys ; 157(21): 214305, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36511550

RESUMO

We have measured, analyzed, and simulated the ground state valence photoelectron spectrum, x-ray absorption (XA) spectrum, x-ray photoelectron (XP) spectrum as well as normal and resonant Auger-Meitner electron (AE) spectrum of oxazole at the carbon, oxygen, and nitrogen K-edge in order to understand its electronic structure. Experimental data are compared to theoretical calculations performed at the coupled cluster, restricted active space perturbation theory to second-order and time-dependent density functional levels of theory. We demonstrate (1) that both N and O K-edge XA spectra are sensitive to the amount of dynamical electron correlation included in the theoretical description and (2) that for a complete description of XP spectra, additional orbital correlation and orbital relaxation effects need to be considered. The normal AE spectra are dominated by a singlet excitation channel and well described by theory. The resonant AE spectra, however, are more complicated. While the participator decay channels, dominating at higher kinetic energies, are well described by coupled cluster theory, spectator channels can only be described satisfactorily using a method that combines restricted active space perturbation theory to second order for the bound part and a one-center approximation for the continuum.

4.
Phys Chem Chem Phys ; 24(46): 28150-28163, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36398603

RESUMO

We investigate the resonant and non-resonant Auger spectra of ozone with a newly implemented multi-reference protocol based on the one-center approximation [Tenorio et al., J. Chem. Theory Comput. 2022, 18, 4387-4407]. The results of our calculations are compared to existing experimental data, where we elucidate the resonant Auger spectrum measured at 530.8 and 536.7 eV, that correspond to the 1sOT → π*(2b1) and 1sOT → σ*(7a1) resonances, and at 542.3 eV, which lies near the 1sOC → σ*(7a1) excited state and above the 1sOT-1 ionization threshold. Using molecular dynamics simulations, we demonstrate the relevance of few-femtoseconds nuclear dynamics in the resonant Auger spectrum of ozone following the 1sOT → π*(2b1) core-excitation.

5.
J Chem Theory Comput ; 18(7): 4387-4407, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35737643

RESUMO

A methodology to calculate the decay rates of normal and resonant Auger processes in atoms and molecules based on the One-Center Approximation (OCA), using atomic radial Auger integrals, is implemented within the restricted-active-space self-consistent-field (RASSCF) and the multistate restricted-active-space perturbation theory of second order (MS-RASPT2) frameworks, as part of the OpenMolcas project. To ensure an unbiased description of the correlation and relaxation effects on the initial core excited/ionized states and the final cationic states, their wave functions are optimized independently, whereas the Auger matrix elements are computed with a biorthonormalized set of molecular orbitals within the state-interaction (SI) approach. As a decay of an isolated resonance, the computation of Auger intensities involves matrix elements with one electron in the continuum. However, treating ionization and autoionization problems can be overwhelmingly complicated for nonexperts, because of many peculiarities, in comparison to bound-state electronic structure theory. One of the advantages of our approach is that by projecting the intensities on the atomic center bearing the core hole and using precalculated atomic radial two-electron integrals, the Auger decay rates can be easily obtained directly with OpenMolcas, avoiding the need to interface it with external programs to compute matrix elements with the photoelectron wave function. The implementation is tested on the Ne atom, for which numerous theoretical and experimental results are available for comparison, as well as on a set of prototype closed- and open-shell molecules, namely, CO, N2, HNCO, H2O, NO2, and C4N2H4 (pyrimidine).

6.
Molecules ; 27(4)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35208990

RESUMO

We present a theoretical model to compute the accurate photoionization dynamical parameters (cross-sections, asymmetry parameters and orbital, or cross-section, ratios) from Dyson orbitals obtained with the multi-state complete active space perturbation theory to the second order (MS-CASPT2) method. Our new implementation of Dyson orbitals in OpenMolcas takes advantage of the full Abelian symmetry point group and has the corrected normalization. The Dyson orbitals are coupled to an accurate description of the electronic continuum obtained with a multicentric B-spline basis at the DFT and TD-DFT levels. Two prototype diatomic molecules, i.e., CS and SiS, have been chosen due to their smallness, which hides important correlation effects. These effects manifest themselves in the appearance of well-characterized isolated satellite bands in the middle of the valence region. The rich satellite structures make CS and SiS the perfect candidates for a computational study based on our highly accurate MS-CASPT2/B-spline TD-DFT protocol.

7.
J Chem Phys ; 155(13): 131101, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34624974

RESUMO

Double Core-Hole (DCH) states of small molecules are assessed with the restricted active space self-consistent field and multi-state restricted active space perturbation theory of second order approximations. To ensure an unbiased description of the relaxation and correlation effects on the DCH states, the neutral ground-state and DCH wave functions are optimized separately, whereas the spectral intensities are computed with a biorthonormalized set of molecular orbitals within the state-interaction approximation. Accurate shake-up satellite binding energies and intensities of double-core-ionized states (K-2) are obtained for H2O, N2, CO, and C2H2n (n = 1-3). The results are analyzed in detail and show excellent agreement with recent theoretical and experimental data. The K-2 shake-up spectra of H2O and C2H2n molecules are here completely characterized for the first time.

8.
J Chem Phys ; 150(22): 224104, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31202254

RESUMO

Oxygen, nitrogen, and carbon K-shell photoabsorption and photoionization cross sections have been calculated within core-valence-separated coupled cluster (CC) linear response theory for a number of molecular systems, namely, water, ammonia, ethylene, carbon dioxide, acetaldehyde, furan, and pyrrole. The cross sections below and above the K-edge core ionization thresholds were obtained, on the same footing, from L2 basis set calculations of the discrete electronic pseudospectrum yielded by an asymmetric-Lanczos-based formulation of CC linear response theory at the CC singles and doubles (CCSD) and CC singles and approximate doubles (CC2) levels. An analytic continuation procedure for both discrete and continuum cross sections as well as a Stieltjes imaging procedure for the photoionization cross section were applied and the results critically compared.

9.
J Chem Phys ; 150(15): 154308, 2019 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-31005109

RESUMO

Inner-shell absolute photoabsorption and photoionization cross sections of the formic acid, HCOOH, and its small hydrogen-bonded clusters, i.e., (HCOOH)2, HCOOH2 +, HCOHOH+, and HCOOH·H3O+, were calculated at the time-dependent density functional theory (TDDFT) level, and the results were used to analyze the effect of the formic acid clustering on the carbon and oxygen K-edge photoionization cross sections. The discrete electronic pseudospectra obtained with square-integrable (L2) basis set calculations were used in an analytic continuation procedure based on continued fraction functions to obtain the photoabsorption cross sections. Symmetry adapted cluster configuration interaction calculations on the small formic acid clusters have also been performed at the oxygen K-edge to assign the discrete transitions and ionization potentials in support to the TDDFT results.

10.
J Chem Theory Comput ; 14(10): 5324-5338, 2018 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-30188703

RESUMO

Near K-edge photoabsorption cross section spectra of a number of molecules, namely, water, ammonia, acetone, acetaldehyde, furan, and pyrrole, were obtained at the nitrogen, oxygen, and carbon K-edges with the Coupled Cluster ansatz (CC) and with the Time-Dependent Density Functional Theory (TDDFT) by treating the inner shell excitations as individual channels, separated from the valence part of the spectrum. The discretized electronic pseudospectrum, obtained with quadratically integrable basis sets ( a.k.a. L2) at the CC or TDDFT level, is used to reconstruct the complex dipole polarizability function, from which the photoabsorption cross section near the K-edge is obtained by a continued fraction based analytic continuation procedure. The CC2 and CCSD results are in good agreement with experimental data, while the TDDFT results yield reliable cross sections. Overall, the results obtained in this work indicate that our method can be used for the treatment of the NEXAFS spectra, with the advantage that the electronic excitations in the K-edges can be easily obtained at low computational cost using TDDFT.

11.
J Chem Phys ; 148(7): 074104, 2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29471657

RESUMO

The time-dependent version of the density functional theory (TDDFT) has been used to calculate the total photoabsorption cross section of a number of molecules, namely, benzene, pyridine, furan, pyrrole, thiophene, phenol, naphthalene, and anthracene. The discrete electronic pseudo-spectra, obtained in a L2 basis set calculation were used in an analytic continuation procedure to obtain the photoabsorption cross sections. The ammonia molecule was chosen as a model system to compare the results obtained with TDDFT to those obtained with the linear response coupled cluster approach in order to make a link with our previous work and establish benchmarks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...