Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(7): e202213228, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36416271

RESUMO

Lithium argyrodite-type electrolytes are regarded as promising electrolytes due to their high ionic conductivity and good processability. Chemical modifications to increase ionic conductivity have already been demonstrated, but the influence of these modifications on interfacial stability remains so far unknown. In this work, we study Li6 PS5 Cl and Li5.5 PS4.5 Cl1.5 to investigate the influence of halogenation on the electrochemical decomposition of the solid electrolyte and the chemical degradation mechanism at the cathode interface in depth. Electrochemical measurements, gas analysis and time-of-flight secondary ion mass spectrometry indicate that the Li5.5 PS4.5 Cl1.5 shows pronounced electrochemical decomposition at lower potentials. The chemical reaction at higher voltages leads to more gaseous degradation products, but a lower fraction of solid oxygenated phosphorous and sulfur species. This in turn leads to a decreased interfacial resistance and thus a higher cell performance.

2.
ACS Nano ; 16(11): 18682-18694, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36283037

RESUMO

Bulk-type solid-state batteries (SSBs) composed of lithium thiophosphate superionic solid electrolytes (SEs) and high-capacity cathode active materials (CAMs) have recently attracted much attention for their potential application in next-generation electrochemical energy storage. However, compatibility issues between the key components in this kind of battery system are difficult to overcome. Here, we report on a protective cathode coating that strongly reduces the prevalence of detrimental side reactions between CAM and SE during battery operation. This is demonstrated using preformed HfO2 nanoparticles as a secondary particle coating for a layered Ni-rich oxide CAM, LiNi0.85Co0.1Mn0.05O2 (NCM85). The preparation of a stable dispersion of the HfO2 nanoparticles enabled the deposition of a uniform coating of thickness ≤11 nm. When incorporated into Li6PS5Cl-based, pellet-stack SSBs, the coated NCM85 showed superior performance in terms of reversibility, cell capacity, longevity, and rate capability over its uncoated counterpart. The effectiveness of the protective coating in mitigating electro-chemo-mechanical degradation was investigated using a suite of physical and electrochemical characterization techniques. In addition, the adaptability to wet processing of the coated NCM85 is demonstrated in slurry-cast SSBs and liquid-electrolyte-based Li-ion cells.

3.
Sci Rep ; 11(1): 5367, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33686168

RESUMO

While still premature as an energy storage technology, bulk solid-state batteries are attracting much attention in the academic and industrial communities lately. In particular, layered lithium metal oxides and lithium thiophosphates hold promise as cathode materials and superionic solid electrolytes, respectively. However, interfacial side reactions between the individual components during battery operation usually result in accelerated performance degradation. Hence, effective surface coatings are required to mitigate or ideally prevent detrimental reactions from occurring and having an impact on the cyclability. In the present work, we examine how surface carbonates incorporated into the sol-gel-derived LiNbO3 protective coating on NCM622 [Li1+x(Ni0.6Co0.2Mn0.2)1-xO2] cathode material affect the efficiency and rate capability of pellet-stack solid-state battery cells with ß-Li3PS4 or argyrodite Li6PS5Cl solid electrolyte and a Li4Ti5O12 anode. Our research data indicate that a hybrid coating may in fact be beneficial to the kinetics and the cycling performance strongly depends on the solid electrolyte used.

4.
ACS Appl Mater Interfaces ; 12(51): 57146-57154, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33302618

RESUMO

All-inorganic solid-state batteries (SSBs) currently attract much attention as next-generation high-density energy-storage technology. However, to make SSBs competitive with conventional Li-ion batteries, several obstacles and challenges must be overcome, many of which are related to interface stability issues. Protective coatings can be applied to the electrode materials to mitigate side reactions with the solid electrolyte, with lithium transition metal oxides, such as LiNbO3 or Li2ZrO3, being well established in research. In addition, it has been recognized lately that carbonates incorporated into the coating may also positively affect the interface stability. In this work, we studied the effect that surface carbonates in case of Li2ZrO3-coated Li1+x(Ni0.6Co0.2Mn0.2)1-xO2 (NCM622) cathode material have on the cyclability of pellet stack SSB cells with Li6PS5Cl and Li4Ti5O12 as a solid electrolyte and an anode, respectively. Both carbonate-rich and carbonate-poor hybrid coatings were produced by altering the synthesis conditions. The best cycling performance was achieved for carbonate-deficient Li2ZrO3-coated NCM622 due to decreased degradation of the argyrodite solid electrolyte at the interfaces, as determined by ex situ X-ray photoelectron spectroscopy and in situ differential electrochemical mass spectrometry. The results emphasize the importance of tailoring the composition and nature of protective coatings to improve the cyclability of bulk SSBs.

5.
ACS Appl Mater Interfaces ; 12(18): 20462-20468, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32275815

RESUMO

Gas evolution in conventional lithium-ion batteries using Ni-rich layered oxide cathode materials presents a serious issue that is responsible for performance decay and safety concerns, among others. Recent findings revealed that gas evolution also occurred in bulk-type solid-state batteries. To further clarify the effect that the electrolyte has on gassing, we report in this work-to the best of our knowledge-the first study comparing gas evolution in lithium-ion batteries with NCM622 cathode material and different electrolyte types, specifically solid (ß-Li3PS4 and Li6PS5Cl) versus liquid (LP57). Using isotopic labeling, acid titration, and in situ gas analysis, we show the presence of O2 and CO2 evolution in both systems, albeit with different cumulative amounts, and possible SO2 evolution for the lithium thiophosphate-based cells. Our results demonstrate the importance of considering gas evolution in solid-state batteries, especially the formation and release of highly corrosive SO2, due to side reactions with the electrolyte.

6.
Chem Commun (Camb) ; 55(75): 11223-11226, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31469136

RESUMO

Determining the state-of-charge of all-solid-state batteries via both ex situ and operando X-ray diffraction, rather than by electrochemical testing (may be strongly affected by electrically isolated/inactive material, irreversible side reactions, etc.), is reported. Specifically, we focus on bulk-type cells and use X-ray diffraction data obtained on a liquid electrolyte-based Li-ion cell as the reference standard for changes in lattice parameters with (de)lithiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...