Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 569-570: 469-475, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27355519

RESUMO

The occurrence of five organophosphate flame retardants (PFRs) consisting of tributyl phosphate (TNBP), tris(2-chloroethyl) phosphate (TCEP), tris(1-chloro-2-propyl) phosphate (TCIPP), tris(1.3-dichloro-2-propyl) phosphate (TDCIPP) and triphenyl phosphate (TPHP) in swimming pools were investigated. Fifteen chlorinated public swimming pools were sampled, including indoor pools, outdoor pools and spa pools. The analyses were carried out using isotope dilution gas chromatography tandem mass spectrometry. All five PFRs were detected in swimming pool waters with concentrations ranging from 5-27ng/L (TNBP), 7-293ng/L (TCEP), 62-1180ng/L (TCIPP), 10-670ng/L (TDCIPP) and 8-132ng/L (TPHP). The concentrations of PFRs were generally higher in indoor swimming pools compared to outdoor swimming pools. In municipal water supplies, used to fill the swimming pools in three of the sampling locations, the five PFRs were all below the limit of quantifications, eliminating this as the source. Potential leaching of PFRs from commonly used swimming equipment, including newly purchased kickboards and swimsuits was investigated. These experiments revealed that PFRs leached from swimsuits, and may be a source of PFRs in swimming pools. A quantitative risk assessment revealed that the health risk to PFRs via swimming pools was generally low and below commonly applied health risk benchmarks.


Assuntos
Retardadores de Chama/análise , Organofosfatos/análise , Piscinas , Poluentes Químicos da Água/análise , Humanos , New South Wales , Medição de Risco
2.
Environ Sci Pollut Res Int ; 23(7): 6972-81, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26705754

RESUMO

The aim of this research was to investigate the presence and daily variability of pharmaceuticals and personal care products (PPCPs) in public swimming pools. Various types of public swimming pool water were analysed, taken from freshwater indoor swimming pools, outdoor swimming pools, spa pools and seawater swimming pools. Swimming pool water samples were analysed for 30 PPCPs using solid phase extraction (SPE) followed by isotope dilution liquid chromatography tandem mass spectrometry (LC-MS/MS). All PPCPs were below quantification limits in seawater pools. However, caffeine was detected in 12 chlorinated swimming pools at concentrations up to 1540 ng/L and ibuprofen was observed in 7 chlorinated pools at concentrations up to 83 ng/L. Caffeine and ibuprofen concentrations were below quantification limits in all fill water samples, eliminating this as their source in swimming pools. High variations in caffeine concentrations monitored throughout the day roughly reflect bather loads in swimming pools. Future monitoring of these compounds may assist in evaluating what portion of organic matter measured in swimming pools may come from human excretions.


Assuntos
Cosméticos/análise , Monitoramento Ambiental , Preparações Farmacêuticas/análise , Piscinas/estatística & dados numéricos , Poluentes Químicos da Água/análise , Cromatografia Líquida , Halogenação , Humanos , Extração em Fase Sólida , Espectrometria de Massas em Tandem , Água/química
3.
Talanta ; 143: 114-120, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26078137

RESUMO

The widespread use of organophosphate flame retardants (PFRs) in commercial products have led to their increased presence in the environment. In this study, a rapid and reliable analytical method was developed for the analysis of five PFRs in water using gas chromatography tandem mass spectrometry (GC-MS/MS) with electron ionisation (EI) and a run time of 13 min. The PFRs investigated were tributyl phosphate (TBP), tris(2-chloroethyl) phosphate (TCEP), tris(1-chloro-2-propyl) phosphate (TCPP), tris(1,3-dichloro-2-propyl) phosphate (TDCP) and triphenyl phosphate (TPP). Solid phase extraction (SPE) was undertaken to extract and concentrate target analytes from aqueous matrices. All water samples were extracted from a volume of 500 mL. Isotopically labelled compounds were used to account for analytical variability and for accurate quantification by isotope dilution. Method recoveries for all compounds were above 80% in all tested water samples. Method detection limits for all target analytes ranged from 0.3 to 24 ng/L in ultrapure water, tap water, seawater, surface water, secondary effluent and swimming pool water. Validation of this method confirmed satisfactory method stability with less than 1% coefficients of variation, verifying that this approach produced good reproducibility.

4.
Environ Int ; 76: 16-31, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25497109

RESUMO

A range of trace chemical contaminants have been reported to occur in swimming pools. Current disinfection practices and monitoring of swimming pool water quality are aimed at preventing the spread of microbial infections and diseases. However, disinfection by-products (DBPs) are formed when the disinfectants used react with organic and inorganic matter in the pool. Additional chemicals may be present in swimming pools originating from anthropogenic sources (bodily excretions, lotions, cosmetics, etc.) or from the source water used where trace chemicals may already be present. DBPs have been the most widely investigated trace chemical contaminants, including trihalomethanes (THMs), haloacetic acids (HAAs), halobenzoquinones (HBQs), haloacetonitriles (HANs), halonitromethanes (HNMs), N-nitrosamines, nitrite, nitrates and chloramines. The presence and concentrations of these chemical contaminants are dependent upon several factors including the types of pools, types of disinfectants used, disinfectant dosages, bather loads, temperature and pH of swimming pool waters. Chemical constituents of personal care products (PCPs) such as parabens and ultraviolet (UV) filters from sunscreens have also been reported. By-products from reactions of these chemicals with disinfectants and UV irradiation have been reported and some may be more toxic than their parent compounds. There is evidence to suggest that exposure to some of these chemicals may lead to health risks. This paper provides a detailed review of various chemical contaminants reported in swimming pools. The concentrations of chemicals present in swimming pools may also provide an alternative indicator to swimming pool water quality, providing insights to contamination sources. Alternative treatment methods such as activated carbon filtration and advanced oxidation processes may be beneficial in improving swimming pool water quality.


Assuntos
Desinfetantes/química , Hidrocarbonetos Halogenados/análise , Piscinas , Poluentes Químicos da Água/análise , Qualidade da Água/normas , Acetatos/análise , Desinfetantes/análise , Concentração de Íons de Hidrogênio , Parabenos/análise , Protetores Solares/análise , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA