Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Mol Biol Educ ; 49(5): 685-691, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34291546

RESUMO

This study presents an evaluation of integrating virtual laboratory simulations in assessment design of a biotechnology course at Taylor's University in Malaysia before, during and post-COVID recovery phases. The purpose was to investigate how virtual laboratory simulations were integrated as part of the assessments of a practical-embedded course-the aim being to evaluate students' acceptance and perception of using virtual simulation. A total of 46 students, across three different study cohorts (August 2019, March 2020, and August 2020) were evaluated different educational aspects of using virtual laboratory cases in a 4-week course within Animal Biotechnology. Overall, students regarded virtual laboratory simulation useful as part of their learning, and there is a significant increase in the level of acceptance before, during and post-COVID recovery phases. The study showed that across the different study cohorts, students perceived their confidence level in laboratory skills have been enhanced and that they can apply the skills in real-life situation. Interestingly, students (March and August 2020 cohort) who have not been exposed to the related laboratory session still perceived that the simulated activity provides clear explanation and realistic experience. Furthermore, it had been highlighted across the study cohorts that the quiz questions helped to enhance their understanding on the underlying principles of the laboratory techniques. The overall conclusion of this study was that structured simulation-based activities which provide clear instructions and explanation would support significant improvements in students learning.


Assuntos
Biotecnologia/educação , COVID-19/epidemiologia , Técnicas de Cultura de Células , Currículo , Laboratórios , SARS-CoV-2 , Realidade Virtual , Animais , Humanos
2.
Front Pharmacol ; 11: 1086, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32848730

RESUMO

The skin is the first line of defense against pathogen and other environmental pollutant. The body is constantly exposed to reactive oxygen species (ROS) that stimulates inflammatory process in the skin. Many studies have linked ROS to various inflammatory skin diseases. Patients with skin diseases face various challenges with inefficient and inappropriate treatment in managing skin diseases. Overproduction of ROS in the body will result in oxidative stress which will lead to various cellular damage and alter normal cell function. Multiple signaling pathways are seen to have significant effects during ROS-mediated oxidative stress. In this review, microalgae have been selected as a source of natural-derived antioxidant to combat inflammatory skin diseases that are prominent in today's society. Several studies have demonstrated that bioactive compounds isolated from microalgae have anti-inflammation and anti-oxidative properties that can help remedy various skin diseases. These compounds are able to inhibit production of pro-inflammatory cytokines and reduce the expression of inflammatory genes. Bioactive compounds from microalgae work in action by altering enzyme activities, regulating cellular activities, targeting major signaling pathways related to inflammation.

3.
PLoS One ; 10(10): e0139469, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26427046

RESUMO

Global warming and ozone depletion, and the resulting increase of ultraviolet radiation (UVR), have far-reaching impacts on biota, especially affecting the algae that form the basis of the food webs in aquatic ecosystems. The aim of the present study was to investigate the interactive effects of temperature and UVR by comparing the photosynthetic responses of similar taxa of Chlorella from Antarctic (Chlorella UMACC 237), temperate (Chlorella vulgaris UMACC 248) and tropical (Chlorella vulgaris UMACC 001) environments. The cultures were exposed to three different treatments: photosynthetically active radiation (PAR; 400-700 nm), PAR plus ultraviolet-A (320-400 nm) radiation (PAR + UV-A) and PAR plus UV-A and ultraviolet-B (280-320 nm) radiation (PAR + UV-A + UV-B) for one hour in incubators set at different temperatures. The Antarctic Chlorella was exposed to 4, 14 and 20°C. The temperate Chlorella was exposed to 11, 18 and 25°C while the tropical Chlorella was exposed to 24, 28 and 30°C. A pulse-amplitude modulated (PAM) fluorometer was used to assess the photosynthetic response of microalgae. Parameters such as the photoadaptive index (Ek) and light harvesting efficiency (α) were determined from rapid light curves. The damage (k) and repair (r) rates were calculated from the decrease in ΦPSIIeff over time during exposure response curves where cells were exposed to the various combinations of PAR and UVR, and fitting the data to the Kok model. The results showed that UV-A caused much lower inhibition than UV-B in photosynthesis in all Chlorella isolates. The three isolates of Chlorella from different regions showed different trends in their photosynthesis responses under the combined effects of UVR (PAR + UV-A + UV-B) and temperature. In accordance with the noted strain-specific characteristics, we can conclude that the repair (r) mechanisms at higher temperatures were not sufficient to overcome damage caused by UVR in the Antarctic Chlorella strain, suggesting negative effects of global climate change on microalgae inhabiting (circum-) polar regions. For temperate and tropical strains of Chlorella, damage from UVR was independent of temperature but the repair constant increased with increasing temperature, implying an improved ability of these strains to recover from UVR stress under global warming.


Assuntos
Chlorella/efeitos da radiação , Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos da radiação , Fotossíntese/efeitos da radiação , Temperatura , Raios Ultravioleta , Chlorella/classificação , Chlorella/crescimento & desenvolvimento , Chlorella/metabolismo , Mudança Climática , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...