Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glycobiology ; 32(9): 760-777, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35789267

RESUMO

Galectin-3 (GAL3) is a ß-galactoside-binding lectin expressed in CD4 T cells infected with human immunodeficiency virus-1 (HIV-1). GAL3 promotes HIV-1 budding by associating with ALIX and Gag p6. GAL3 has been shown to localize in membrane lipid rafts in dendritic cells and positively regulate cell migration. HIV-1 spreads between T cells by forming supramolecular structures (virological synapses [VSs]), whose integrity depends on lipid rafts. Here, we addressed the potential role of GAL3 in cell-to-cell transmission of HIV-1 in CD4 T cells. GAL3 expressed in donor cells was more important for facilitating HIV-1 cell-to-cell transfer than GAL3 expressed in target cells. GAL3 was found to be co-transferred with Gag from HIV-1-positive donor to HIV-1-negative target T cells. HIV-1 infection induced translocation of GAL3 together with Gag to the cell-cell interfaces and colocalize with GM1, where GAL3 facilitated VS formation. GAL3 regulated the coordinated transfer of Gag and flotillin-1 into plasma membrane fractions. Finally, depletion of GAL3 reduced the cholesterol levels in membrane lipid rafts in CD4 T cells. These findings provide evidence that endogenous GAL3 stimulates lipid raft components and facilitates intercellular HIV-1 transfer among CD4 T cells, offering another pathway by which GAL3 regulates HIV-1 infection. These findings may inform the treatment of HIV-1 infection based on targeting GAL3 to modulate lipid rafts.


Assuntos
Infecções por HIV , HIV-1 , Proteínas Sanguíneas , Linfócitos T CD4-Positivos/metabolismo , Galectina 3/genética , Galectina 3/metabolismo , Galectinas , Humanos , Lipídeos de Membrana/análise , Lipídeos de Membrana/metabolismo , Microdomínios da Membrana/química
2.
J Virol ; 88(14): 7998-8015, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24807709

RESUMO

The virion of dengue virus (DENV) is composed of a viral envelope covering a nucleocapsid formed by a complex of viral genomic RNA and core protein (CP). DENV CP forms a dimer via the internal α2 and α4 helices of each monomer. Pairing of α2-α2' creates a continuous hydrophobic surface, while the α4-α4' helix pair joins the homodimer via side-chain interactions of the inner-edge residues. However, the importance of dimer conformation and the α4 helix of DENV CP in relation to its function are poorly understood. Loss of association between CP and lipid droplets (LDs) due to mutation suggests that the CP hydrophobic surface was not exposed, offering a possible explanation for the absence of dimers. Further assays suggest the connection between CP folding and protein stability. Attenuation of full-length RNA-derived virus production is associated with CP mutation, since no significant defects were detected in virus translation and replication. The in vitro characterization assays further highlighted that the α4-α4' helix pair conformation is critical in preserving the overall α-helical content, thermostability, and dimer formation ability of CP, features correlated with the efficiency of nucleocapsid formation. Addition of Tween 20 improves in vitro nucleocapsid-like particle formation, suggesting the role of the LD in nucleocapsid formation in vivo. This study provides the first direct link between the α4-α4' helix pair interaction and the CP dimer conformation that is the basis of CP function, particularly in nucleocapsid formation during virion production. Importance: Structure-based mutagenesis study of the dengue virus core protein (CP) reveals that the α4-α4' helix pair is the key to maintaining its dimer conformation, which is the basis of CP function in nucleocapsid formation and virus production. Attenuation of full-length RNA-derived virus production is associated with CP mutation, since no significant defects in virus translation and replication were detected. In vitro inefficiency and size of nucleocapsid-like particle (NLP) formation offer a possible explanation for in vivo virus production inefficiency upon CP mutation. Further, the transition of NLP morphology from an incomplete state to an intact particle shown by α4-α4' helix pair mutants in the presence of a nonionic detergent suggests the regulatory role of the intracellular lipid droplet (LD) in CP-LD interaction and in promoting nucleocapsid formation. This study provides the first direct link between the α4-α4' helix pair interaction and CP dimer conformation that is the fundamental requirement of CP function, particularly in nucleocapsid formation during virion production.


Assuntos
Vírus da Dengue/fisiologia , Nucleocapsídeo/metabolismo , Multimerização Proteica , RNA Viral/metabolismo , Proteínas do Core Viral/metabolismo , Montagem de Vírus , Aedes , Sequência de Aminoácidos , Animais , Linhagem Celular , Cricetinae , Modelos Moleculares , Conformação Proteica
3.
FEBS Lett ; 585(16): 2575-81, 2011 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-21771593

RESUMO

In this study we showed that the dengue virus (DENV) core protein forms a dimer with an α-helix-rich structure, binds RNA and facilitates the strand annealing process. To assess the RNA chaperone activity of this core protein and other dengue viral RNA-interacting proteins, such as NS3 helicase and NS5 proteins, we engineered cis- and trans-cleavage hammerhead ribozyme constructs carrying DENV genomic RNA elements. Our results indicate that DENV core protein facilitates typical hammerhead structure formation by acting as an RNA chaperone and DENV NS5 has a weak RNA chaperone activity, while DENV NS3 helicase failed to refold RNA with a complex secondary structure.


Assuntos
Vírus da Dengue , Chaperonas Moleculares/metabolismo , RNA Viral/metabolismo , Proteínas do Core Viral/metabolismo , Sequência de Bases , Genoma Viral/genética , Conformação de Ácido Nucleico , Ligação Proteica , Engenharia de Proteínas , RNA Helicases/metabolismo , RNA Catalítico/genética , RNA Viral/química , RNA Viral/genética , Serina Endopeptidases/metabolismo , Proteínas não Estruturais Virais/metabolismo
4.
J Biomed Biotechnol ; 2009: 781712, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19325913

RESUMO

A Cucumber green mottle mosaic virus (CGMMV) was used to present a truncated dengue virus type 2 envelope (E) protein binding region from amino acids 379 to 423 (EB4). The EB4 gene was inserted at the terminal end of the CGMMV coat protein (CP) open reading frame (ORF). Read-through sequences of TMV or CGMMV, CAA-UAG-CAA-UUA, or AAA-UAG-CAA-UUA were, respectively, inserted in between the CP and the EB4 genes. The chimeric clones, pRT, pRG, and pCG+FSRTRE, were transcribed into full-length capped recombinant CGMMV transcripts. Only constructs with the wild-type CGMMV read-through sequence yielded infectious viruses following infection of host plant, muskmelon (Cucumis melo) leaves. The ratio of modified to unmodified CP for the read-through expression clone developed was also found to be approximately 1:1, higher than what has been previously reported. It was also observed that infectivity was not affected by differences in pI between the chimera and its wild counterpart. Analysis of recombinant viruses after 21-days-postinculation (dpi) revealed that deletions occurred resulting in partial reversions of the viral population to near wild type and suggesting that this would be the limiting harvest period for obtaining true to type recombinants with this construct.


Assuntos
Códon/genética , Vírus da Dengue/genética , Vírus da Dengue/imunologia , Tobamovirus/genética , Proteínas do Envelope Viral/genética , Sequência de Aminoácidos , Apresentação de Antígeno , Sequência de Bases , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Clonagem Molecular , Cucumis melo/virologia , Epitopos/imunologia , Vetores Genéticos , Ponto Isoelétrico , Dados de Sequência Molecular , RNA Viral/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Tobamovirus/fisiologia , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/metabolismo , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...