Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 12(1): 131-144, 2023 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-38050731

RESUMO

Semi-solid extrusion (SSE) 3D printing has recently attracted increased attention for its pharmaceutical application as a potential method for small-batch manufacturing of personalised solid dosage forms. It has the advantage of allowing ambient temperature printing, which is especially beneficial for the 3D printing of thermosensitive drugs. In this study, the effects of polymeric compositions (single hydroxypropyl methylcellulose (HPMC) system and binary HPMC + polyvinylpyrrolidone (PVP) system), disintegrant (silicon oxide (SiO2)), and active pharmaceutical ingredients (tranexamic acid (TXA) and paracetamol (PAC)) on the printability of semisolid inks and the qualities of SSE printed drug-loaded tablets were investigated. Printability is defined by the suitability of the material for the process in terms of its physical properties during extrusions and post-extrusion, including rheology, solidification time, avoiding slumping, etc. The rheological properties of the inks were investigated as a function of polymeric compositions and drug concentrations and further correlated with the printability of the inks. The SSE 3D printed tablets were subjected to a series of physicochemical properties characterisations and in vitro drug release performance evaluations. The results indicated that an addition of SiO2 would improve 3D printing shape fidelity (e.g., pore area and porosity) by altering the ink rheology. The pores of HPMC + PVP + 5PAC prints completely disappeared after 12 hours of drying (pore area = 0 mm2). An addition of SiO2 significantly improved the pore area of the prints which are 3.5 ± 0.1 mm2. It was noted that the drug release profile of PAC significantly increased (p < 0.05) when additive SiO2 was incorporated in the formulation. This could be due to a significantly higher porosity of HPMC + PVP + SiO2 + PAC (70.3 ± 0.2%) compared to HPMC + PVP + PAC (47.6 ± 2.1%). It was also likely that SiO2 acted as a disintegrant speeding up the drug release process. Besides, the incorporation of APIs with different aqueous solubilities, as well as levels of interaction with the polymeric system showed significant impacts on the structural fidelity and subsequently the drug release performance of 3D printed tablets.


Assuntos
Tinta , Tecnologia Farmacêutica , Tecnologia Farmacêutica/métodos , Dióxido de Silício , Comprimidos , Derivados da Hipromelose/química , Impressão Tridimensional , Polímeros , Povidona
2.
Int J Pharm ; 625: 122140, 2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36031167

RESUMO

Three-dimensional (3D) printing allows for the design and printing of more complex designs than traditional manufacturing processes. For the manufacture of personalised medicines, such an advantage could enable the production of personalised drug products on demand. In this study, two types of extrusion-based 3D printing techniques, semi-solid syringe extrusion 3D printing and fused deposition modelling, were used to fabricate a combi-layer construct (combi-pill). Two model drugs, tranexamic acid (water soluble, rapid release) and indomethacin (poorly water-soluble, extended release), were printed with different geometries and materials compositions. Fourier transform infrared spectroscopy results showed that there were no interactions detected between drug-drug and drug-polymers. The printed combi-pills demonstrated excellent abrasion resisting properties in friability tests. The use of different functional excipients demonstrated significant impact on in vitro drug release of the model drugs incorporated in two 3D printed layers. Tranexamic acid and indomethacin were successfully 3D printed as a combi-pill with immediate-release and sustained-release profiles, respectively, to target quick anti-bleeding and prolonged anti-inflammation functions. For the first time, this paper systematically demonstrates the feasibility of coupling syringe-based extrusion 3D printing and fused deposition modelling as an innovative platform for various drug therapy productions, facilitating a new era of personalised combi-pills development.


Assuntos
Seringas , Ácido Tranexâmico , Liberação Controlada de Fármacos , Indometacina , Impressão Tridimensional , Comprimidos/química , Tecnologia Farmacêutica/métodos , Água
3.
Pharm Res ; 39(6): 1267-1279, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35661083

RESUMO

PURPOSE: Semi-solid extrusion (SSE) 3D printing has potential pharmaceutical applications for producing personalised medicine. However, the effects of ink properties and drug incorporation on the quality of printed medication have not been thoroughly studied, particularly for porous geometries. This study aimed to investigate the effects of the presence of solid drug particles in SSE inks on the printing quality of porous structures. METHOD: The rheological behaviour of model inks of paracetamol (PCM)-hypromellose (HPMC) with different drug loadings were investigated and correlated to their printing qualities. RESULTS: For the inks with PCM loading above the drug solubility in which suspended solid drug particulates were present, the results confirmed that PCM loading and particle size significantly affected the ink viscosities at a low shear rate. At a low shear rate, the highest viscosity was identified when the highest drug loading and the smallest PCM particles were incorporated into the inks. However, the results indicated that the SSE printing parameters and printing quality of porous structures (with less porous structural deformation) have no clear correlation with the shear viscosity data, but a strong correlation with the dynamic oscillatory rheology of the inks. CONCLUSION: The key rheological parameters including storage modulus, loss modulus and complex viscosity of the ink increased with increasing drug loading for the inks containing solid drug particles. However, decreasing the particle size did not have a clear effect on the oscillatory rheology of the inks which can be potentially used for optimising the SSE 3D printing quality of porous geometries.


Assuntos
Tinta , Impressão Tridimensional , Preparações Farmacêuticas , Porosidade , Reologia
4.
J Pharm Sci ; 111(1): 95-101, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34174289

RESUMO

The choice of carrier and drug ratio are critical factors as far as the type of solid dispersion is concerned. Amorphous solid dispersion has been cited as the most desirable type among the different types of solid dispersion due to the benefit of amorphicity in increasing the drug solubility of a poorly soluble drug. Recent reports delineated that a partially crystalline solid dispersion system may perform better due to the inherent issue of solution mediated recrystallisation of a completely amorphous system. In oppose to the conventional choice of using amorphous polymer, this study aimed to investigate the use of a crystalline carrier, polyethylene glycol (PEG) for dissolution enhancement of a model poorly soluble drug, Flurbiprofen (FBP), a BCS Class II candidate. Solid dispersions of different FBP to PEG 6000 molar ratios via solvent evaporation were prepared. Physical characterisation of preparations was performed using differential scanning calorimetry (DSC), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and optical microscope. DSC and ATR-FTIR analyses suggest the obtained solid dispersion exhibits crystalline FBP. This is then supported by the optical microscope analysis as the birefringence of crystals was noted. Further increasing the drug-carrier molar ratio to one-to-three and one-to-six showed that there was an amorphous FBP constituent in the system. DSC analysis revealed the melting point depression of FBP by the carrier which signifies interaction between the drug and polymer. Dissolution study showed the solid dispersion of FBP improves the drug solubility and drug release compared to the pure drug. A higher carrier ratio in the formulation results in a higher drug release.


Assuntos
Excipientes , Polietilenoglicóis , Varredura Diferencial de Calorimetria , Portadores de Fármacos/química , Polietilenoglicóis/química , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier
5.
J Pharm Biomed Anal ; 192: 113631, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33011581

RESUMO

Atovaquone (ATQ) is a poorly soluble drug. Therefore, formulating ATQ into its supersaturated state through solid dispersion for bioavailability enhancement can be of great value. However, due to fast crystallising properties of ATQ, the quantification of ATQ in a supersaturated solid dispersion system can be complicated. Therefore, in pursuit of accurate quantification of such sample, a simple HPLC analytical method utilising a C18 column (250 × 4.6 mm ID, 5 µm) for the quantitation of ATQ has been developed and validated. Atovaquone elution using the proposed method demonstrated a retention time around 7.6 min with good linearity (R2 > 0.999). The system suitability is also detailed with the tailing factor at 1.365 ± 0.002. The addition of solubilising agent as sample treatment step aided in ensuring the accurate quantitation of the fast crystallising ATQ. The developed HPLC quantitation method has been successfully employed in the analysis of ATQ from solid dispersion samples in in vitro dissolution as well as ex vivo permeation studies for formulation development.


Assuntos
Atovaquona , Disponibilidade Biológica , Cromatografia Líquida de Alta Pressão , Solubilidade
6.
Pharm Res ; 37(2): 28, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31912250

RESUMO

PURPOSE: This study aims to conduct an impact investigation in the hydrophobic-hydrophilic balance as an important factor for dissolution improvement of a hydrophilic carrier-based solid dispersion system. METHODS: Polymeric carriers with different hydrophobic to hydrophilic ratios were used to prepare several electrospun solid dispersion formulations. Physicochemical properties and surface morphology of the samples were assessed using Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR), polarized light microscopy, Differential Scanning Calorimetry (DSC), X-ray Powder Diffraction (XRPD) and Scanning Electron Microscopy (SEM). Dissolution study was conducted in a non-sink condition to assess the drug release. RESULTS: Incorporation of a higher amount of hydrophilic component showed an improvement in formulating a fully amorphous system based on XRPD, yet the dissolution rate increment showed no significant difference from the lower. Hence, the degree of crystallinity is proven not to be the crucial factor contributing to dissolution rate improvement. The presence of a concomitant hydrophobic component, however, showed ability in resisting precipitation and sustaining supersaturation. CONCLUSION: Hydrophobicity in a binary carrier system plays an important role in achieving and maintaining the supersaturated state particularly for an amorphous solid dispersion. Graphical Abstract.


Assuntos
Antimaláricos/química , Atovaquona/química , Portadores de Fármacos/química , Polivinil/química , Povidona/química , Cristalização , Composição de Medicamentos , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Cinética , Solubilidade , Solventes/química
7.
Pharm Dev Technol ; 25(2): 245-251, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31690150

RESUMO

Poor solubility and bioavailability of drugs are often affected by its microscopic structural properties. Nitrofurantoin (NF), a Biopharmaceutics Classification System class II item, has a low water solubility with low plasma concentrations. To improve its therapeutic efficacy, formulation strategy of solid dispersion (SD) and co-crystallization are compared herein. The co-crystal is prepared with citric acid in 1:1 stoichiometric ratio while SD consists of 30% w/w nitrofurantoin and 70% w/w hydroxypropyl methylcellulose (HPMC) as the carrier system. As a control, the physical mixture of NF and HPMC was prepared. All the preparations were characterized with differential scanning calorimetry (DSC), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), microscopy analysis, solubility, and dissolution studies. The formation of co-crystal, solvent evaporated, and spray-dried SD are confirmed by the ATR-FTIR where peaks shifting of several functional groups indicate the formation of the hydrogen bond. Dissolution studies showed a greater initial dissolution rate in co-crystal than SD despite the possible presence of amorphous content in the SD system. Overall, co-crystal is concluded to be a better approach than SD for an effective dissolution.


Assuntos
Nitrofurantoína/química , Disponibilidade Biológica , Varredura Diferencial de Calorimetria/métodos , Cristalização/métodos , Composição de Medicamentos/métodos , Derivados da Hipromelose/química , Microscopia Eletrônica de Varredura/métodos , Tamanho da Partícula , Solubilidade/efeitos dos fármacos , Solventes/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Difração de Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...