Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Front Med (Lausanne) ; 9: 796085, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308500

RESUMO

Purpose: To investigate the reproducibility of tracer uptake measurements, including volume metrics, such as metabolic tumor volume (MTV) and tumor lesion glycolysis (TLG) obtained by TOF-PET-CT and TOF-PET-MR. Materials and Methods: Eighty consecutive patients with different oncologic diagnoses underwent TOF-PET-CT (Discovery 690; GE Healthcare) and TOF-PET-MR (SIGNA PET-MR; GE Healthcare) on the same day with single dose-18F-FDG injection. The scan order, PET-CT following or followed by PET-MR, was randomly assigned. A spherical volume of interest (VOI) of 30 mm was placed on the liver in accordance with the PERCIST criteria. For liver, the maximum and mean standard uptake value for body weight (SUV) and lean body mass (SUL) were obtained. For tumor delineation, VOI with a threshold of 40 and 50% of SUVmax was used (VOI40 and VOI50). The SUVmax, SUVmean, SUVpeak, MTV and TLG were calculated. The measurements were compared between the two scanners. Results: In total, 80 tumor lesions from 35 patients were evaluated. There was no statistical difference observed in liver regions, whereas in tumor lesions, SUVmax, SUV mean, and SUVpeak of PET-MR were significantly underestimated (p < 0.001) in both VOI40 and VOI50. Among volume metrics, there was no statistical difference observed except TLG on VOI50 (p = 0.03). Correlation between PET-CT and PET-MR of each metrics were calculated. There was a moderate correlation of the liver SUV and SUL metrics (r = 0.63-0.78). In tumor lesions, SUVmax and SUVmean had a stronger correlation with underestimation in PET-MR on VOI 40 (SUVmax and SUVmean; r = 0.92 and 0.91 with slope = 0.71 and 0.72, respectively). In the evaluation of MTV and TLG, the stronger correlations were observed both on VOI40 (MTV and TLG; r = 0.75 and 0.92) and VOI50 (MTV and TLG; r = 0.88 and 0.95) between PET-CT and PET-MR. Conclusion: PET metrics on TOF-PET-MR showed a good correlation with that of TOF-PET-CT. SUVmax and SUVpeak of tumor lesions were underestimated by 16% on PET-MRI. MTV with % threshold can be regarded as identical volumetric markers for both TOF-PET-CT and TOF-PET-MR.

2.
Q J Nucl Med Mol Imaging ; 65(2): 178-186, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31496202

RESUMO

BACKGROUND: Identification of pretherapeutic predictive markers in gastro-esophageal cancer is essential for individual-oriented treatment. This study evaluated the relationship of multimodality parameters derived from intravoxel incoherent motion method (IVIM), 18F-FDG-positron emission tomography (PET), computed tomography (CT) perfusion and dynamic contrast enhanced magnetic resonance imaging (MRI) in patients with gastro-esophageal cancer and investigated their histopathological correlation. METHODS: Thirty-one consecutive patients (28 males; median age 63.9 years; range 37-84 years) with gastro-esophageal adenocarcinoma (N.=22) and esophageal squamous cell carcinoma (N.=9) were analyzed. IVIM parameters: pseudodiffusion (D*), perfusion fraction (fp), true diffusion (D) and the threshold b-value (bval); PET-parameters: SUVmax, metabolic tumor volume (MTV) and total lesion glycolysis (TLG); CT perfusion parameters: blood flow (BF), blood volume (BV) and mean transit time (MTT); and MR perfusion parameters: time to enhance, positive enhancement integral, time-to-peak (TTP), maximum-slope-of-increase, and maximum-slope-of-decrease were determined, and correlated to each other and to histopathology. RESULTS: IVIM and PET parameters showed significant negative correlations: MTV and bval (rs =-0.643, P=0.002), TLG and bval (rs=-0.699, P<0.01) and TLG and fp (rs=-0.577, P=0.006). Positive correlation was found for TLG and D (rs=0.705, P=0.000). Negative correlation was found for bval and staging (rs=0.590, P=0.005). Positive correlation was found for positive enhancement interval and BV (rs=0.547, P=0.007), BF and regression index (rs=0.753, P=0.005) and for time-to-peak and staging (rs=0.557, P=0.005). CONCLUSIONS: IVIM parameters (bval, fp, D) provide quantitative information and correlate with PET parameters (MTV, TLG) and staging. IVIM might be a useful tool for additional characterization of gastro-esophageal cancer.


Assuntos
Neoplasias Esofágicas/diagnóstico por imagem , Carcinoma de Células Escamosas do Esôfago/diagnóstico por imagem , Fluordesoxiglucose F18/química , Compostos Radiofarmacêuticos/química , Adulto , Idoso , Idoso de 80 Anos ou mais , Circulação Sanguínea , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Imagem Multimodal , Imagem de Perfusão , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Carga Tumoral
3.
EJNMMI Res ; 10(1): 85, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32699996

RESUMO

BACKGROUND: Brown adipose tissue (BAT) is a thermogenic tissue which can generate heat in response to mild cold exposure. As it constitutes a promising target in the fight against obesity, we need reliable techniques to quantify its activity in response to therapeutic interventions. The current standard for the quantification of BAT activity is [18F]FDG PET/CT. Various sequences in magnetic resonance imaging (MRI), including those measuring its relative fat content (fat fraction), have been proposed and evaluated in small proof-of-principle studies, showing diverging results. Here, we systematically compare the predictive value of adipose tissue fat fraction measured by MRI to the results of [18F]FDG PET/CT. METHODS: We analyzed the diagnostic reliability of MRI measured fat fraction (FF) for the estimation of human BAT activity in two cohorts of healthy volunteers participating in two prospective clinical trials (NCT03189511, NCT03269747). In both cohorts, BAT activity was stimulated by mild cold exposure. In cohort 1, we performed [18F]FDG PET/MRI; in cohort 2, we used [18F]FDG PET/CT followed by MRI. Fat fraction was determined by 2-point Dixon and 6-point Dixon measurement, respectively. Fat fraction values were compared to SUVmean in the corresponding tissue depot by simple linear regression. RESULTS: In total, 33 male participants with a mean age of 23.9 years and a mean BMI of 22.8 kg/m2 were recruited. In 32 participants, active BAT was visible. On an intra-individual level, FF was significantly lower in high-SUV areas compared to low-SUV areas (cohort 1: p < 0.0001 and cohort 2: p = 0.0002). The FF of the supraclavicular adipose tissue depot was inversely related to its metabolic activity (SUVmean) in both cohorts (cohort 1: R2 = 0.18, p = 0.09 and cohort 2: R2 = 0.42, p = 0.009). CONCLUSION: MRI FF explains only about 40% of the variation in BAT glucose uptake. Thus, it can currently not be used to substitute [18F] FDG PET-based imaging for quantification of BAT activity. TRIAL REGISTRATION: ClinicalTrials.gov. NCT03189511 , registered on June 17, 2017, actual study start date was on May 31, 2017, retrospectively registered. NCT03269747 , registered on September 01, 2017.

4.
PLoS One ; 15(6): e0233886, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32492074

RESUMO

BACKGROUND: The purpose of this study was to assess the impact of vendor-provided atlas-based MRAC on FDG PET/MR for the evaluation of Alzheimer's disease (AD) by using simulated images. METHODS: We recruited 47 patients, from two institutions, who underwent PET/CT and PET/MR (GE SIGNA) examination for oncological staging. From the PET raw data acquired on PET/MR, two FDG-PET series were generated, using vendor-provided MRAC (atlas-based) and CTAC. The following simulation steps were performed in MNI space: After spatial normalization and smoothing of the PET datasets, we calculated the error map for each patient, PETMRAC/PETCTAC. We multiplied each of these 47 error maps with each of the 203 Alzheimer's Disease Neuroimaging Initiative (ADNI) cases after the identical normalization and smoothing. This resulted in 203*47 = 9541 datasets. To evaluate the probability of AD in each resulting image, a cumulative t-value was calculated automatically using commercially-available software (PMOD PALZ) which has been used in multiple large cohort studies. The diagnostic accuracy for the discrimination of AD and predicting progression from mild cognitive impairment (MCI) to AD were evaluated in simulated images compared with ADNI original images. RESULTS: The accuracy and specificity for the discrimination of AD-patients from normal controls were not substantially impaired, but sensitivity was slightly impaired in 5 out of 47 datasets (original vs. error; 83.2% [CI 75.0%-89.0%], 83.3% [CI 74.2%-89.8%] and 83.1% [CI 75.6%-88.3%] vs. 82.7% [range 80.4-85.0%], 78.5% [range 72.9-83.3%,] and 86.1% [range 81.4-89.8%]). The accuracy, sensitivity and specificity for predicting progression from MCI to AD during 2-year follow-up was not impaired (original vs. error; 62.5% [CI 53.3%-69.3%], 78.8% [CI 65.4%-88.6%] and 54.0% [CI 47.0%-69.1%] vs. 64.8% [range 61.5-66.7%], 75.7% [range 66.7-81.8%,] and 59.0% [range 50.8-63.5%]). The worst 3 error maps show a tendency towards underestimation of PET scores. CONCLUSION: FDG-PET/MR based on atlas-based MR attenuation correction showed similar diagnostic accuracy to the CT-based method for the diagnosis of AD and the prediction of progression of MCI to AD using commercially-available software, although with a minor reduction in sensitivity.


Assuntos
Doença de Alzheimer/diagnóstico , Disfunção Cognitiva/diagnóstico , Imageamento por Ressonância Magnética , Neuroimagem/métodos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/patologia , Simulação por Computador , Conjuntos de Dados como Assunto , Diagnóstico Diferencial , Progressão da Doença , Feminino , Fluordesoxiglucose F18/administração & dosagem , Seguimentos , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Compostos Radiofarmacêuticos/administração & dosagem , Sensibilidade e Especificidade
5.
Eur Radiol ; 30(6): 3188-3197, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32060711

RESUMO

OBJECTIVES: When increasing the PET acquisition time to match the longer MRI protocol in simultaneous PET/MR, the injected PET tracer dose can possibly be lowered to reduce radiation exposure. Moreover, applying new commercially available time-of-flight (TOF) block sequential regularized expectation maximization (BSREM)-based reconstruction algorithms could allow for further dose reductions. The purpose of this study was to find the minimal dose of the tracer targeting the prostate specific membrane antigen (68Ga-PSMA-11) for a dedicated 15-min pelvic PET/MR scan that still matches the image quality of a reference 3-min scan at 100% (150 MBq) dose. METHODS: In this retrospective analysis, 25 patients were included. PET emission datasets were edited to simulate stepwise reductions of injected tracer dose. Reference TOF ordered subset expectation maximum (OSEM) and new TOF BSREM reconstructions were performed and differences in the resulting PET images were visually and quantitatively assessed. RESULTS: Visually, TOF BSREM reconstructions with relatively high regularization parameter (ß) values are preferred. Quantitatively, however, high ß-values result in lower lesion maximum standardized uptake values (SUVmax) compared to the reference. A ß-value of 550 was considered the optimal compromise for the lowest possible 10% dose reconstructions, resulting in comparable visual assessment and lesion SUVmax. CONCLUSIONS: This study indicates that the injected 68Ga-PSMA-11 tracer dose for a standard 3-min PET scan can be reduced to approximately 10% (15 MBq) when the PET acquisition time is matched to the 15-min pelvic MRI protocol, and when reconstructed with TOF BSREM using ß = 550. This decreases the effective dose from 3.54 to 0.35 mSv. KEY POINTS: • Low-dose dedicated pelvic68Ga-PSMA-11 PET/MR reduces radiation exposure for patients. • Retrospective study investigating the minimal dose needed for adequate image quality for 15-min PET frames over the pelvis showed using quantitative and qualitative analysis that a substantial dose reduction is possible without significant loss of image quality when using the TOF BSREM reconstruction algorithm. • With the introduction of low-dose pelvic68Ga-PSMA-11 PET/MR, new potential applications of68Ga-PSMA-11 PET for local staging or investigation of equivocal MRI findings could become applicable, even for patients without confirmed prostate cancer.


Assuntos
Radioisótopos de Gálio/administração & dosagem , Glicoproteínas de Membrana/administração & dosagem , Compostos Organometálicos/administração & dosagem , Pelve/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Próstata/diagnóstico por imagem , Idoso , Algoritmos , Antígenos de Superfície , Isótopos de Gálio , Glutamato Carboxipeptidase II , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias da Próstata/diagnóstico por imagem , Doses de Radiação , Estudos Retrospectivos
6.
EJNMMI Res ; 10(1): 5, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31974702

RESUMO

BACKGROUND: Positron emission tomography (PET) is increasingly applied for in vivo brown adipose tissue (BAT) research in healthy volunteers. To limit the radiation exposure, the injected 18F-FDG tracer dose should be as low as possible. With simultaneous PET/MR imaging, the radiation exposure due to computed tomography (CT) can be avoided, but more importantly, the PET acquisition time can often be increased to match the more extensive magnetic resonance (MR) imaging protocol. The potential gain in detected coincidence counts, due to the longer acquisition time, can then be applied to decrease the injected tracer dose. The aim of this study was to investigate the minimal 18F-FDG dose for a 10-min time-of-flight (TOF) PET/MR acquisition that would still allow accurate quantification of supraclavicular BAT volume and activity. METHODS: Twenty datasets from 13 volunteers were retrospectively included from a prospective clinical study. PET emission datasets were modified to simulate step-wise reductions of the original 75 MBq injected dose. The resulting PET images were visually and quantitatively assessed and compared to a 4-min reference scan. For the visual assessment, the image quality and artifacts were scored using a 5-point and a 3-point Likert scale. For the quantitative analysis, image noise and artifacts, BAT metabolic activity, BAT metabolic volume (BMV), and total BAT glycolysis (TBG) were investigated. RESULTS: The visual assessment showed still good image quality for the 35%, 30%, and 25% activity reconstructions with no artifacts. Quantitatively, the background noise was similar to the reference for the 35% and 30% activity reconstructions and the artifacts started to increase significantly in the 25% and lower activity reconstructions. There was no significant difference in supraclavicular BAT metabolic activity, BMV, and TBG between the reference and the 35% to 20% activity reconstructions. CONCLUSIONS: This study indicates that when the PET acquisition time is matched to the 10-min MRI protocol, the injected 18F-FDG tracer dose can be reduced to approximately 19 MBq (25%) while maintaining image quality and accurate supraclavicular BAT quantification. This could decrease the effective dose from 1.4 mSv to 0.36 mSv.

7.
Eur J Hybrid Imaging ; 4(1): 6, 2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-34191149

RESUMO

BACKGROUND: PET/MRI has a high potential in oncology imaging, especially for tumor indications where high soft tissue contrast is crucial such as genitourinary tumors. One of the challenges for PET/MRI acquisition is handling of metal implants. In addition to conventional methods, more innovative techniques have been developed to reduce artifacts caused by those implants such as the selective multiacquisition variable-image combination (MAVRIC-SL). The aim of this study is to perform a quantitative and qualitative assessment of metal artifact reduction in 68Ga-PSMA-11 PET/MRI for prostate cancer patients with hip joint replacement using a selective MAVRIC-SL sequence for the whole pelvis. METHODS: We retrospectively analyzed data of 20 men with 37 metal hip implants diagnosed with PCA, staged or restaged by 68Ga-PSMA-11 PET/MRI from June 2016 to December 2017. Each signal cancellation per side or metal implant was analyzed on the reference sequence LAVA-FLEX, as well as T1-weighted fast spin echo (T1w-FSE) sequence and MAVRIC-SL. Two independent reviewers reported on a four-point scale whether abnormal pelvic 68Ga-PSMA-11 uptake could be assigned to an anatomical structure in the tested sequences. RESULTS: The smallest averaged signal void was observed on MAVRIC-SL sequences with a mean artifact size of 26.17 cm2 (range 12.63 to 42.93 cm2, p < 0.001). The best image quality regarding anatomical assignment of pathological PSMA uptakes in the pelvis by two independent readers was noted for MAVRIC-SL sequences, followed by T1w-FSE with excellent interreader agreement. CONCLUSIONS: MAVRIC-SL sequence allows better image quality in the surrounding of hip implants by reducing MR signal voids and increasing so the accuracy of anatomical assignment of pathological 68Ga-PSMA-11 uptake in the pelvis over LAVA-FLEX and T1w-FSE sequences.

8.
Eur J Nucl Med Mol Imaging ; 47(1): 147-159, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31522272

RESUMO

INTRODUCTION: Radical prostatectomy with extended pelvic lymph node dissection (ePLND) is a curative treatment option for patients with clinically significant localised prostate cancer. The decision to perform an ePLND can be challenging because the overall incidence of lymph node metastasis is relatively low and ePLND is not free of complications. Using current clinical nomograms to identify patients with nodal involvement, approximately 75-85% of ePLNDs performed are negative. The aim of this study was to assess the added value of 68Ga-PSMA-11 PET in predicting lymph node metastasis in men with intermediate- or high-risk prostate cancer. METHODS: 68Ga-PSMA-11 PET scans of 60 patients undergoing radical prostatectomy with ePLND were reviewed for qualitative (visual) assessment of suspicious nodes and assessment of quantitative parameters of the primary tumour in the prostate (SUVmax, total activity (PSMAtotal) and PSMA positive volume (PSMAvol)). Ability of quantitative PET parameters to predict nodal metastasis was assessed with receiver operating characteristics (ROC) analysis. A multivariable logistic regression model combining PSA, Gleason score, visual nodal status on PET and primary tumour PSMAtotal was built. Net benefit at each risk threshold was compared with five nomograms: MSKCC nomogram, Yale formula, Roach formula, Winter nomogram and Partin tables (2016). RESULTS: Overall, pathology of ePLND specimens revealed 31 pelvic metastatic lymph nodes in 12 patients. 68Ga-PSMA-11 PET visual analysis correctly detected suspicious nodes in 7 patients, yielding a sensitivity of 58% and a specificity of 98%. The area under the ROC curve for primary tumour SUVmax was 0.70, for PSMAtotal 0.76 and for PSMAvol 0.75. The optimal cut-off for nodal involvement was PSMAtotal > 49.1. The PET model including PSA, Gleason score and quantitative PET parameters had a persistently higher net benefit compared with all clinical nomograms. CONCLUSION: Our model combining PSA, Gleason score and visual lymph node analysis on 68Ga-PSMA-11 PET with PSMAtotal of the primary tumour showed a tendency to improve patient selection for ePLND over the currently used clinical nomograms. Although this result has to be validated, 68Ga-PSMA-11 PET showed the potential to reduce unnecessary surgical procedures in patients with intermediate- or high-risk prostate cancer.


Assuntos
Excisão de Linfonodo , Neoplasias da Próstata , Ácido Edético/análogos & derivados , Isótopos de Gálio , Radioisótopos de Gálio , Humanos , Linfonodos/patologia , Masculino , Estadiamento de Neoplasias , Oligopeptídeos , Seleção de Pacientes , Prostatectomia , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia
9.
J Nucl Med ; 60(8): 1118-1123, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30683764

RESUMO

High-intensity focused ultrasound (HIFU) is a promising new modality for the treatment of localized prostate cancer (PCa). Follow-up of patients is recommended with biopsies and multiparametric MRI (mpMRI). However, mpMRI in the postinterventional setting is often false-negative. It was our aim to investigate if the new tracer targeting the prostate-specific membrane antigen (68Ga-PSMA-11) could be used to localize recurrent disease with PET/MR in patients with discrepant findings between mpMRI and template biopsies. Methods: Interim analysis was performed of the first 10 patients scanned between September 2016 and May 2018 with positive template biopsy and negative mpMRI after HIFU from an ongoing clinical trial (NCT02265159). All patients underwent 68Ga-PSMA-11 PET/MRI within 3 mo. Four prostatic quadrants were defined, and for every quadrant suspicion for recurrence was rated on a 5-point Likert scale from definitely no recurrence (1) to highly suspected of recurrence (5), with 4 used as a cutoff for suspected disease based on PET/MRI by a masked reader. 68Ga-PSMA-11 uptake of suspected lesions and background areas was measured with the SUVmax The apparent diffusion coefficient values of lesions and background were given for each segment. PET/MRI scans were compared with the template biopsy results, including corresponding Gleason scores (GS), number of positive cores, and tumor length. Results: The quadrant-based sensitivity, specificity, and positive and negative predictive values for PET/MRI were 55%, 100%, 100%, and 85%, respectively. Patient-based PET/MRI was negative in 4 cases with GS 3 + 4 and a tumor length between 0.1 and 3 mm. All tumor lesions with GS 4 + 3 or higher were detected on PET/MRI. Conclusion: Our preliminary results indicate that 68Ga-PSMA-11-PET/MR has the potential to localize PCa recurrence after HIFU occult on mpMRI.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Imageamento por Ressonância Magnética Multiparamétrica , Tomografia por Emissão de Pósitrons , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/terapia , Idoso , Biópsia , Reações Falso-Negativas , Isótopos de Gálio , Radioisótopos de Gálio , Humanos , Masculino , Glicoproteínas de Membrana , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Variações Dependentes do Observador , Compostos Organometálicos , Estudos Prospectivos , Compostos Radiofarmacêuticos , Reprodutibilidade dos Testes
10.
NMR Biomed ; 32(1): e4035, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30457686

RESUMO

PURPOSE: A relatively high signal for choline-containing compounds (total choline, tCho) is commonly found in 1 H MR spectra of malignant tumors, but it is unclear if this also occurs in tumors in the liver. We evaluated the potential of the tCho signal in single voxel 1 H MR spectra of the human liver to assess metastases of colorectal cancers. EXPERIMENT: MR spectra of an 8 cm3 PRESS-localized voxel were obtained at 3 T from the livers of 12 healthy volunteers and from metastatic lesions in 20 patients in two different sessions. To correct for motion artifacts, sequentially recorded spectra were individually phased and frequency aligned before averaging. Spectra were analyzed using LCModel and tissue levels estimated by water referencing. Repeatability was assessed with Bland-Altman analyses. To estimate tumor necrosis, diffusion-weighted imaging of the liver was performed. High resolution magic angle spinning (HRMAS) spectra of tumor and normal liver samples were obtained at 11.7 T. RESULTS: With increasing tumor volumes, tCho levels decreased, indicating a partial volume effect. Mean tCho content in tumors larger than the PRESS voxel (>8 cm3 ) was significantly lower (p < 0.01) than for normal liver: 1.6 (range 0.0-3.4) versus 6.9 (range 4.9-11.1) mmol/kg wet weight, while it was comparable for tumors smaller than 8 cm3 : 7.0 (range 3.8-9.3) mmol/kg. The higher 90th percentile apparent diffusion coefficient value in the larger lesions indicates more necrosis. Measurement repeatability was average in normal livers and poor in tumors. HRMAS did not show substantial differences in choline-containing compounds between normal liver and metastasis. CONCLUSION: An increased tCho content was not observed in 1 H MR spectra of liver metastasis of colorectal cancer, compared with normal liver. This may be due to the background of a high tCho signal in spectra of normal liver or to an intrinsic lower tCho content in these tumors, but is most likely the result of necrosis in metastatic tumor tissue.


Assuntos
Colina/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/secundário , Fígado/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Adulto , Idoso , Imagem de Difusão por Ressonância Magnética , Humanos , Metaboloma , Pessoa de Meia-Idade , Controle de Qualidade , Reprodutibilidade dos Testes
11.
EJNMMI Res ; 8(1): 70, 2018 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-30054750

RESUMO

BACKGROUND: In contrast to ordered subset expectation maximization (OSEM), block sequential regularized expectation maximization (BSREM) positron emission tomography (PET) reconstruction algorithms can run until full convergence while controlling image quality and noise. Recent studies with BSREM and 18F-FDG PET reported higher signal-to-noise ratios and higher standardized uptake values (SUV). In this study, we investigate the optimal regularization parameter (ß) for clinical 68Ga-PSMA PET/MR reconstructions in the pelvic region applying time-of-flight (TOF) BSREM in comparison to TOF OSEM. Two-minute emission data from the pelvic region of 25 patients who underwent 68Ga-PSMA PET/MR were retrospectively reconstructed. Reference OSEM reconstructions had 28 subsets and 2 iterations. BSREM reconstructions were performed with 15 ß values between 150 and 1200. Regions of interest (ROIs) were drawn around lesions and in uniform background. Background SUVmean (average) and SUVstd (standard deviation), and lesion SUVmax (average of 5 hottest voxels) were calculated. Differences were analyzed using the Wilcoxon matched pairs signed-rank test. RESULTS: A total of 40 lesions were identified in the pelvic region. Background noise (SUVstd) and lesions SUVmax decreased with increasing ß. Image reconstructions with ß values lower than 400 have higher (p < 0.01) background noise, compared to the reference OSEM reconstructions, and are therefore less useful. Lesions with low activity on images reconstructed with ß values higher than 600 have a lower (p < 0.05) SUVmax compared to the reference. These reconstructions are likely visually appealing due to the lower background noise, but the lower SUVmax could possibly render small low-uptake lesions invisible. CONCLUSIONS: In our study, we showed that PET images reconstructed with TOF BSREM in combination with the 68Ga-PSMA tracer result in lower background noise and higher SUVmax values in lesions compared to TOF OSEM. Our study indicates that a ß value between 400 and 550 might be the optimal compromise between high SUVmax and low background noise.

12.
EJNMMI Res ; 8(1): 68, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-30054768

RESUMO

Unfortunately, after publication of this article [1], it was noticed that the name of Urs J. Muehlematter was incorrectly displayed as Urs J. Mühlematter. The corrected author list can be seen above and the original article has been corrected to reflect this.

13.
J Nucl Med ; 59(12): 1817-1822, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29880506

RESUMO

The goal of this study was to determine the level of clinically acceptable 18F-FDG dose reduction in time-of-flight PET/MRI in patients with breast cancer. Methods: Twenty-six consecutive women with histologically proven breast cancer were analyzed (median age, 51 y; range, 34-83 y). Simulated dose-reduced PET images were generated by unlisting the list-mode data on PET/MRI. The acquired 20-min PET frame was reconstructed in 5 ways: a reconstruction of the first 2 min with 3 iterations and 28 subsets for reference, and reconstructions simulating 100%, 20%, 10%, and 5% of the original dose. General image quality and artifacts, image sharpness, image noise, and lesion detectability were analyzed using a 4-point scale. Qualitative parameters were compared using the nonparametric Friedman test for multiple samples and the Wilcoxon signed-rank test for paired samples. Different groups of independent samples were compared using the Mann-Whitney U test. Results: Overall, 355 lesions (71 lesions with 5 different reconstructions each) were evaluated. The 20-min reconstruction with 100% injected dose showed the best results in all categories. For general image quality and artifacts, image sharpness, and noise, the reconstructions with a simulated dose of 20% and 10% were significantly better than the 2-min reconstructions (P ≤ 0.001). Furthermore, 20%, 10%, and 5% reconstructions did not yield results different from those of the 2-min reconstruction for detectability of the primary lesion. For 10% of the injected dose, a calculated mean dose of 22.6 ± 5.5 MBq (range, 17.9-36.9 MBq) would have been applied, resulting in an estimated whole-body radiation burden of 0.5 ± 0.1 mSv (range, 0.4-0.7 mSv). Conclusion: Ten percent of the standard dose of 18F-FDG (reduction of ≤90%) results in clinically acceptable PET image quality in time-of-flight PET/MRI. The calculated radiation exposure would be comparable to the effective dose of a single digital mammogram. A reduction of radiation burden to this level might justify partial-body examinations with PET/MRI for dedicated indications.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Fluordesoxiglucose F18 , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Viabilidade , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Pessoa de Meia-Idade , Imagem Multimodal/métodos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Estudos Prospectivos , Doses de Radiação , Exposição à Radiação , Compostos Radiofarmacêuticos
14.
EJNMMI Res ; 8(1): 41, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29855728

RESUMO

BACKGROUND: Accurate attenuation correction (AC) is an inherent problem of positron emission tomography magnetic resonance imaging (PET/MRI) systems. Simulation studies showed that time-of-flight (TOF) detectors can reduce PET quantification errors in MRI-based AC. However, its impact on lesion detection in a clinical setting with 18F-choline has not yet been evaluated. Therefore, we compared TOF and non-TOF 18F-choline PET for absolute and relative difference in standard uptake values (SUV) and investigated the detection rate of metastases in prostate cancer patients. RESULTS: Non-TOF SUV was significantly lower compared to TOF in all osseous structures, except the skull, in primary lesions of the prostate, and in pelvic nodal and osseous metastasis. Concerning lymph node metastases, both experienced readers detected 16/19 (84%) on TOF PET, whereas on non-TOF PET readers 1 and 2 detected 11 (58%), and 14 (73%), respectively. With TOF PET readers 1 and 2 detected 14/15 (93%) and 11/15 (73%) bone metastases, respectively, whereas detection rate with non-TOF PET was 73% (11/15) for reader 1 and 53% (8/15) for reader 2. The interreader agreement was good for osseous metastasis detection on TOF (kappa 0.636, 95% confidence interval [CI] 0.453-0.810) and moderate on non-TOF (kappa = 0.600, CI 0.438-0.780). CONCLUSION: TOF reconstruction for 18F-choline PET/MRI shows higher SUV measurements compared to non-TOF reconstructions in physiological osseous structures as well as pelvic malignancies. Our results suggest that addition of TOF information has a positive impact on lesion detection rate for lymph node and bone metastasis in prostate cancer patients.

16.
Radiology ; 286(1): 249-259, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28914600

RESUMO

Purpose To determine the level of clinically acceptable reduction in injected fluorine 18 (18F) fluorodeoxyglucose (FDG) dose in time-of-flight (TOF)-positron emission tomography(PET)/magnetic resonance (MR) imaging by using silicon photomultiplier (SiPM) detectors compared with TOF-PET/computed tomography (CT) using Lu1.8Y0.2SiO5(Ce), or LYSO, detectors in patients with different body mass indexes (BMIs). Materials and Methods Patients were enrolled in this study as part of a larger prospective study with a different purpose than evaluated in this study (NCT02316431). All patients gave written informed consent prior to inclusion into the study. In this study, 74 patients with different malignant diseases underwent sequential whole-body TOF-PET/CT and TOF-PET/MR imaging. PET images with simulated reduction of injected 18F-FDG doses were generated by unlisting the list-mode data from PET/MR imaging. Two readers rated the image quality of whole-body data sets, as well as the image quality in each body compartment, and evaluated the conspicuity of malignant lesions. Results The image quality with 70% or 60% of the injected dose of 18F-FDG at PET/MR imaging was comparable to that at PET/CT. With 50% of the injected dose, comparable image quality was maintained among patients with a BMI of less than 25 kg/m2. PET images without TOF reconstruction showed higher artifact scores and deteriorated sharpness than those with TOF reconstruction. Conclusion Sixty percent of the usually injected 18F-FDG dose (reduction of up to 40%) in patients with a BMI of more than 25 kg/m2 results in clinically adequate PET image quality in TOF-PET/MR imaging performed by using SiPM detectors. Additionally, in patients with a BMI of less than 25 kg/m2, 50% of the injected dose may safely be used. © RSNA, 2017 Online supplemental material is available for this article.


Assuntos
Fluordesoxiglucose F18/administração & dosagem , Processamento de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Imagem Corporal Total/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Fluordesoxiglucose F18/uso terapêutico , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/instrumentação , Estudos Prospectivos
17.
Head Neck ; 39(8): 1550-1558, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28500749

RESUMO

BACKGROUND: The purpose of this study was to compare the diagnostic accuracy of positron emission tomography (PET)/MRI with PET/CT for local resectability of head and neck cancer. METHODS: Sequential contrast-enhanced PET/CT-MRI was performed in 58 patients referred for the staging or restaging of head and neck cancer. Tumors were assessed with PET/CT and PET/MRI for the presence of resectability-defining factors: T4b status (mediastinal invasion, invasion of the prevertebral space, and vascular encasement), and another 8 findings that would imply obstacles for surgical cure (invasion of the laryngeal cartilage, invasion of the preepiglottic fat pad, perineural spread, orbital invasion, bone infiltration, skull base invasion, dural infiltration, and invasion of the brachial plexus). RESULTS: The sensitivity/specificity/accuracy of local resectability-defining factors of PET/CT and PET/MRI was 0.92/0.99/0.98 and 0.98/0.99/0.99 (P = .727), respectively, per lesion, and 0.96/0.87/0.91 and 0.96/0.90/0.93 (P = .687), respectively, per patient. CONCLUSION: Both contrast-enhanced PET/MRI and contrast-enhanced PET/CT can serve as reliable examinations for defining local resectability of head and neck cancer.


Assuntos
Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/patologia , Reações Falso-Positivas , Feminino , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Cartilagens Laríngeas/diagnóstico por imagem , Cartilagens Laríngeas/patologia , Masculino , Imagem Multimodal , Invasividade Neoplásica , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Sensibilidade e Especificidade
18.
Eur J Nucl Med Mol Imaging ; 44(7): 1223-1233, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28124091

RESUMO

PURPOSE: Our objective was to determine clinically the value of time-of-flight (TOF) information in reducing PET artifacts and improving PET image quality and accuracy in simultaneous TOF PET/MR scanning. METHODS: A total 65 patients who underwent a comparative scan in a simultaneous TOF PET/MR scanner were included. TOF and non-TOF PET images were reconstructed, clinically examined, compared and scored. PET imaging artifacts were categorized as large or small implant-related artifacts, as dental implant-related artifacts, and as implant-unrelated artifacts. Differences in image quality, especially those related to (implant) artifacts, were assessed using a scale ranging from 0 (no artifact) to 4 (severe artifact). RESULTS: A total of 87 image artifacts were found and evaluated. Four patients had large and eight patients small implant-related artifacts, 27 patients had dental implants/fillings, and 48 patients had implant-unrelated artifacts. The average score was 1.14 ± 0.82 for non-TOF PET images and 0.53 ± 0.66 for TOF images (p < 0.01) indicating that artifacts were less noticeable when TOF information was included. CONCLUSION: Our study indicates that PET image artifacts are significantly mitigated with integration of TOF information in simultaneous PET/MR. The impact is predominantly seen in patients with significant artifacts due to metal implants.


Assuntos
Artefatos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Imagem Multimodal , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada por Raios X , Adulto , Idoso , Idoso de 80 Anos ou mais , Implantes Dentários , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Razão Sinal-Ruído , Fatores de Tempo , Adulto Jovem
19.
J Nucl Med ; 58(7): 1167-1173, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28062597

RESUMO

Metalic implants may affect attenuation correction (AC) in PET/MR imaging. The purpose of this study was to evaluate the effect of susceptibility artifacts related to metallic implants on adjacent metabolically active lesions in clinical simultaneous PET/MR scanning for both time-of-flight (TOF) and non-TOF reconstructed PET images. Methods: We included 27 patients without implants but with confirmed 18F-FDG-avid lesions adjacent to common implant locations. In all patients, a clinically indicated whole-body 18F-FDG PET/MR scan was acquired. Baseline non-TOF and TOF PET images were reconstructed. Reconstruction was repeated after the introduction of artificial signal voids in the AC map to simulate metallic implants in standard anatomic areas. All reconstructed images were qualitatively and quantitatively assessed and compared with the baseline images. Results: In total, 51 lesions were assessed. In 40 and 50 of these cases (non-TOF and TOF, respectively), the detectability of the lesions did not change; in 9 and 1 cases, the detectability changed; and in 2 non-TOF cases, the lesions were no longer visible after the introduction of metallic artifacts. The inclusion of TOF information significantly reduced artifacts due to simulated implants in the femoral head, sternum, and spine (P = 0.01, 0.01, and 0.03, respectively). It also improved image quality in these locations (P = 0.02, 0.01, and 0.01, respectively). The mean percentage error was -3.5% for TOF and -4.8% for non-TOF reconstructions, meaning that the inclusion of TOF information reduced the percentage error in SUVmax by 28.5% (P < 0.01). Conclusion: Qualitatively, there was a significant reduction of artifacts in the femoral head, sternum, and spine. There was also a significant qualitative improvement in image quality in these locations. Furthermore, our study indicated that simulated susceptibility artifacts related to metallic implants have a significant effect on small, moderately 18F-FDG-avid lesions near the implant site that possibly may go unnoticed without TOF information. On larger, highly 18F-FDG-avid lesions, the metallic implants had only a limited effect. The largest significant quantitative difference was found in artifacts of the sternum. There was only a weak inverse correlation between lesions affected by artifacts and distance from the implant.


Assuntos
Imageamento por Ressonância Magnética/métodos , Metais , Imagem Multimodal/métodos , Neoplasias/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Próteses e Implantes , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
Clin Nucl Med ; 42(2): e88-e95, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27922861

RESUMO

BACKGROUND: To compare the diagnostic accuracy of PET/MR and PET/CT in patients with suspected occult primary tumors. METHODS: This prospective study was approved by the institutional review board. Sequential PET/CT-MR was performed in 43 patients (22 male subjects; median age, 58 years; range, 20-86 years) referred for suspected occult primary tumors. Patients were assessed with PET/CT and PET/MR for the presence of a primary tumor, lymph node metastases, and distant metastases. Wilcoxon signed-rank test was performed to compare the diagnostic accuracy of PET/CT and PET/MR. RESULT: According to the standard of reference, a primary lesion was found in 14 patients. In 16 patients, the primary lesion remained occult. In the remaining 13 patients, lesions proved to be benign. PET/MR was superior to PET/CT for primary tumor detection (sensitivity/specificity, 0.85/0.97 vs 0.69/0.73; P = 0.020) and comparable to PET/CT for the detection of lymph node metastases (sensitivity/specificity, 0.93/1.00 vs 0.93/0.93; P = 0.157) and distant metastases (sensitivity/specificity, 1.00/0.97 vs 0.82/1.00; P = 0.564). PET/CT tended to misclassify physiologic FDG uptake as malignancy compared with PET/MR (8 patients vs 1 patient). CONCLUSIONS: PET/MR outperforms PET/CT in the workup of suspected occult malignancies. PET/MR may replace PET/CT to improve clinical workflow.


Assuntos
Imageamento por Ressonância Magnética , Imagem Multimodal , Neoplasias Primárias Desconhecidas/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Fluordesoxiglucose F18 , Humanos , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Neoplasias Primárias Desconhecidas/patologia , Compostos Radiofarmacêuticos , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...