Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(2): e202214960, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36349975

RESUMO

Mono-alkene-inserted [n]cycloparaphenylenes 1 [(ene)-[n]CPP] with n=6, 8, and 10, mono-ortho-phenylene-inserted [6]CPP 2, and di-alkene-insertved [n]CPP 3 [(ene)2 -[n]CPP] with n=4, 6, and 8 were synthesized by fusing CPP precursors and alkene or ortho- phenylene groups through coupling reactions. Single-crystal X-ray diffraction analyses reveal that the strips formed by the π-surfaces of 1 and 2 exhibited a Möbius topology in the solid state. While the Möbius topology in the parent 1 and 2 in solution was lost due to the free rotation of the paraphenylene unit even at low temperatures, ene-[6]CPP 4 with eight 1-pyrrolyl groups preserved the Möbius topology even in solution. Despite a twist, 1 has in-plane conjugation and possesses a unique size dependence of the electronic properties: namely, the opposite size dependency of the HOMO-LUMO energy relative to conventional π-conjugated molecules.

2.
Biomacromolecules ; 22(7): 2815-2821, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34000810

RESUMO

To develop nanopiezoelectronics, it is necessary to investigate the relationship between the sizes and piezoelectric properties of the material. Peptide nanotubes (PNTs) composed of cyclic ß-peptides have been studied as leading candidates for nanopiezoelectric materials. The current drawback of PNTs is aggregation to form a PNT bundle structure due to strong dipole-dipole interactions between PNTs. Here, we report the construction and piezoelectric properties of single PNTs without nonspecific aggregation by side-chain modification of helical peptides. A cyclic tri-ß-peptide with a helical peptide was prepared by multiple-step liquid-phase peptide synthesis and assembled into PNTs by the vapor diffusion method. These nanotubes were characterized by polarized light microscopy and Fourier transform infrared (FTIR) spectroscopy. Additionally, atomic force microscopy (AFM) topographic images showed nanotubes with a height of 4 nm, which corresponds to the diameter of a PNT on a gold-coated mica substrate, indicating that a single PNT was prepared successfully. The converted piezoelectric response of a single PNT was determined to be 1.39 ± 0.12 pm/V. This value was consistent with that of a PNT bundle, which reveals that the piezoelectricity of PNTs is induced by deformation of their cyclic skeletons and is independent of the bundled structure. This finding not only demonstrates a new molecular design strategy to construct these smallest piezoelectric biomaterials by controlling the supramolecular hierarchical structures but also provides insights into the correlation between molecular assembly morphology and size-dependent piezoelectric properties.


Assuntos
Nanotubos de Peptídeos , Nanotubos , Microscopia de Força Atômica , Peptídeos , Peptídeos Cíclicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...