Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Chem Pharm Bull (Tokyo) ; 71(3): 213-219, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36858526

RESUMO

The purpose of the present study was to provide the experimental and theoretical basis of bioequivalence (BE) dissolution test criteria for formulation development of high solubility-low permeability drugs. According to the biowaiver scheme based on the biopharmaceutics classification system (BCS), for BCS class III drugs, a test formulation and a reference formulation are predicted to be BE when 85% of the drug dissolves within 15 min (T85% < 15 min) in the compendial dissolution test. However, previous theoretical simulation studies have suggested that this criterion may possibly be relaxed for use in practical formulation development. In the present study, the dissolution profiles of 14 famotidine formulations for which BE has been clinically confirmed were evaluated by the compendial dissolution test at pH 1.2 and 6.8. The plasma concentration-time profiles of famotidine formulations were simulated using the dissolution data. In addition, virtual simulations were performed to estimate the range of dissolution rates to be bioequivalent. The fastest and slowest dissolution rates among the famotidine formulations were T85% = 10 min and T85% = 60 min at pH 6.8, respectively. The virtual simulation BE study suggested that famotidine formulations can be bioequivalent when T85% < 99 min. In the case of BCS III drugs, the rate-limiting step of oral drug absorption is the membrane permeation process rather than the dissolution process. Therefore, a difference in the dissolution process has less effect on BE. These results contribute to a better understanding of the biowaiver approach and would be of great help in the formulation development of BCS class III drugs.


Assuntos
Biofarmácia , Famotidina , Equivalência Terapêutica , Solubilidade , Permeabilidade
2.
Int J Pharm ; 607: 120959, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34333025

RESUMO

Isosorbide (ISO) is an effective hyperosmotic agent that can be administrated orally and is used as a therapeutic agent for brain pressure drop, glaucoma, and Meniere's disease. However, the critical relative humidity (CRH) of ISO is about 48% RH at 25 °C, and it deliquesces in humid environments. In this study, we attempted to reduce the deliquescence of ISO using cocrystallization and analyze the water adsorption mechanism from the crystal structure. Four new ISO cocrystals with piperazine (PZ), hydrochlorothiazide (HCT), 3,5-dihydroxybenzoic acid (35DHBA), or gallic acid (GA) were identified. The dynamic vapor sorption analyses demonstrated that all the cocrystals showed higher CRHs than the ISO crystal. Although water adsorption below the CRH was observed for all cocrystals, the water molecules adsorbed in the ISO-PZ and ISO-GA cocrystals were lower than those in the ISO crystal. Investigation of the crystal structures suggested that the amount of water adsorbed might be related to the degree of exposure of the ISO hydroxyl groups on the crystal surface. Given the CRH, water adsorption below the CRH, thermal stability, apparent dissolution rate, and toxicity level of the coformer, the ISO-GA cocrystal is the most suitable for preparing a solid formulation of ISO.


Assuntos
Isossorbida , Água , Cristalização , Solubilidade , Molhabilidade , Difração de Raios X
3.
Chem Pharm Bull (Tokyo) ; 69(2): 185-198, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33518601

RESUMO

In the drug formulation process, compound dissolution rate and wettability may be improved by grinding. However, there is no method to understand the effects of the wettability of the crystal facets of the ground product. Here, acetylsalicylic acid (ASA) was used to evaluate the changes in crystal morphology and dissolution rate by jet milling using powder X-ray diffraction and in silico simulation. Several cleavage facets were observed in cube crystals, and the (0 0 2) facet was observed in plate crystals. Furthermore, the dissolution rate of the ground samples per unit area decreased with the cleavage of the (1 0 0) and (0 0 2) facets. The polar surface energy of the ground sample decreased with increasing grinding pressure. The simulation results showed that the absolute attachment energy of the (1 0 0) and (0 0 2) facets was lower than that of the other crystal facets. Moreover, atoms with low polarity were present on the crystal surface of (0 0 2). The wettability and dissolution rate of the (0 0 2) facet were worse than those of the (1 0 0) facet. It was suggested that the dissolution rate of the ground sample was affected by the wettability of the crystal facet caused by the cleavage. The cleavability and wettability may be understood by simulation.


Assuntos
Aspirina/química , Simulação por Computador , Pós/química , Cristalização , Composição de Medicamentos , Tamanho da Partícula , Pressão , Solubilidade , Propriedades de Superfície , Molhabilidade , Difração de Raios X
4.
Chem Pharm Bull (Tokyo) ; 69(2): 211-217, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33298636

RESUMO

As a result of the research activities of the Japan Agency for Medical Research and Development (AMED), this document aims to show an approach to establishing control strategy for continuous manufacturing of oral solid dosage forms. The methods of drug development, technology transfer, process control, and quality control used in the current commercial batch manufacturing would be effective also in continuous manufacturing, while there are differences in the process development using continuous manufacturing and batch manufacturing. This document introduces an example of the way of thinking for establishing a control strategy for continuous manufacturing processes.


Assuntos
Formas de Dosagem , Composição de Medicamentos/métodos , Administração Oral , Formas de Dosagem/normas , Composição de Medicamentos/normas , Indústria Manufatureira/normas , Controle de Qualidade
5.
Yakugaku Zasshi ; 140(7): 913-921, 2020.
Artigo em Japonês | MEDLINE | ID: mdl-32612056

RESUMO

Controlling the physicochemical properties of a drug formulation is important for proper drug efficacy, since in the gastrointestinal tract many drugs undergo dissolution, limiting their efficacy. Factors affecting a drug's physicochemical properties include its crystal habit. Therefore, we predicted the crystal habit by molecular simulation for the purpose of controlling crystal morphology. In this study, we used aspirin as a model compound. By performing simulations based on known crystal structure data, we trained the simulation algorithm to produce the cubic and plate-like morphologies of crystals actually obtained. By these methods, we showed that the crystal plane of the crystal form actually obtained coincides with the characteristic crystal plane obtained by simulation. Furthermore, to consider the influence of the crystallization solvent on crystal growth, we simulated adsorption of solvent molecules on characteristic crystal planes. The difference in adsorption energy of the solvent molecules prevents the aspirin molecules from attaching to the crystal plane. As a result, we concluded that the crystal habit was caused by the difference in growth rate of the crystal plane. By applying the methods developed in this research, the growth of crystal planes can be predicted by molecular simulation, making it possible to efficiently obtain crystal forms with optimal physical properties for drug development. We believe that further development of this approach will lead to dramatic decreases in the cost and duration of drug development.


Assuntos
Aspirina/química , Adsorção , Fenômenos Químicos , Cristalização , Composição de Medicamentos , Previsões , Modelos Moleculares , Solventes/química
6.
Int J Pharm ; 567: 118446, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31220565

RESUMO

Active pharmaceutical ingredients are composed of single-component or multicomponent crystals. Multicomponent crystals include salts, co-crystals, and solvates. Indinavir sulfate is the ethanol solvate form of indinavir that is known to deliquesce through moisture absorption. However, the detailed behavior of solvent molecules in the crystal has not been investigated. In this study, we studied the desolvation mechanism of indinavir sulfate ethanol and investigated the behavior of solvent molecules in the solid from. Indinavir sulfate ethanol contained 1.7 molecules of ethanol, 0.7 of which desolvated at room temperature. They were originally two ethanol solvent molecules; one molecule of ethanol desolvated at room temperature, and the conformation of the remaining ethanol and t-butyl groups changed in conjunction with the removal of one ethanol molecule. Desolvation could hardly be detected by powder X-ray diffraction; however, it was detected using terahertz spectroscopy. Terahertz measurement of desolvation showed a high correlation with thermogravimetry data, suggesting that desolvation could be observed non-destructively using terahertz spectroscopy. We concluded that indinavir sulfate 1 ethanol deliquesced at 60% relative humidity, and it turned into an amorphous solid after drying.


Assuntos
Etanol/química , Indinavir/química , Solventes/química , Dessecação , Umidade , Difração de Pó , Espectroscopia Terahertz , Difração de Raios X
7.
Chem Pharm Bull (Tokyo) ; 65(11): 1028-1034, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29093289

RESUMO

Magnesium stearate (MgSt), an essential lubricant in the manufacturing of tablets, is available in several hydrate forms with different qualities that affect the physical properties of tablets. This study examined MgSt mono- and dihydrates, and their effects on tablet dissolution, disintegration, and hardness. These effects were examined in terms of surface free energy and dispersibility. Dissolution, disintegration, and hardness were evaluated for tablets manufactured from powder mixtures of each MgSt hydrate form and other components, including ethenzamide as an active ingredient, using different mixing times. The surface energy was evaluated for MgSt mono- or dihydrate powder mixtures with a surface tensiometer. For dispersibility, the adhesion states of MgSt hydrates to other components were visually observed via near-infrared (NIR) chemical imaging. The dispersion behavior of MgSt hydrates was examined by quantitative evaluation of skewness and kurtosis of histograms, based on NIR images, and domain size estimated from their binary images. It was found that changes in those parameters related to dispersibility and dissolution differed between MgSt hydrates. This suggests that the quantitative determination of dispersibility of MgSt using NIR chemical imaging is a useful methodology for improving the understanding of tablet manufacturing blending processes.


Assuntos
Magnésio/química , Ácidos Esteáricos/química , Comprimidos/química , Propriedades de Superfície , Água/química
8.
J Pharm Sci ; 106(1): 258-263, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28340956

RESUMO

The aim of this study was to determine the thermodynamic stability order of co-crystals using co-crystal former exchange reactions and to validate 2 in silico parameters for predicting co-crystal formation. Co-crystal former exchange reactions were performed using acetaminophen (AC) co-crystals of oxalic acid (OX), maleic acid (MA), and theophylline (TH). The addition of TH to an AC-MA co-crystal (AC-MA) afforded AC-TH, suggesting that AC-TH was more stable than AC-MA. The stability order among the other co-crystals was determined in the same manner. The stability order of the AC co-crystals was determined to be AC-TH > AC-MA ≈ AC-OX. Interestingly, the addition of TH to AC-OX afforded TH-OX. The stability order of the TH co-crystals was also determined (OX-TH > AC-TH ≈ MA-TH). Although the stability order of the AC co-crystals was consistent with the differences in their hydrogen bond energy (ΔE), an in silico parameter for predicting co-crystal formation, it showed no relationship to the excess enthalpy (Hex). These results suggest that co-crystal formation can be predicted with greater accuracy using ΔE rather than Hex for AC co-crystals. The stability orders of the AC and TH co-crystals also correlated well with their melting points and disintegration temperatures.


Assuntos
Acetaminofen/química , Analgésicos não Narcóticos/química , Broncodilatadores/química , Cristalização/métodos , Teofilina/química , Estabilidade de Medicamentos , Ligação de Hidrogênio , Maleatos/química , Modelos Moleculares , Ácido Oxálico/química , Difração de Pó/métodos , Termodinâmica , Difração de Raios X/métodos
9.
Chem Pharm Bull (Tokyo) ; 65(2): 186-193, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27928130

RESUMO

Manufacturing the solid dosage form of an orally administered drug requires lubrication to enhance manufacturability, ensuring that critical quality attributes such as disintegration and dissolution of the drug product are maintained during manufacture. Here, to evaluate lubrication performance during manufacture, we used terahertz attenuated total reflection (THz-ATR) spectroscopy to detect differences in the physical characteristics of the lubricated powder. We applied a simple formulation prepared by blending granulated lactose as filler with magnesium stearate as lubricant. A flat tablet was prepared using the lubricated powder to acquire sharp THz-ATR absorption peaks of the samples. First, we investigated the effects of lubricant concentration and compression pressure on preparation of the tablet and then determined the effect of the pressure applied to samples in contact with the ATR prism on sample absorption amplitude. We focused on the differences in the magnitudes of spectra at the lactose-specific frequency. Second, we conducted the dynamic lubrication process using a 120-L mixer to investigate differences in the magnitudes of absorption corresponding to the lactose-specific frequency during lubrication. In both studies, enriching the lubricated powder with a higher concentration of magnesium stearate or prolonging blending time correlated with higher magnitudes of spectra at the lactose-specific frequency. Further, in the dynamic lubrication study, the wettability and disintegration time of the tablets were compared with the absorption spectra amplitudes at the lactose-specific frequency. We conclude that THz-ATR spectroscopy is useful for detecting differences in densities caused by a change in the physical properties of lactose during lubrication.


Assuntos
Composição de Medicamentos/métodos , Lactose/química , Lubrificação , Ácidos Esteáricos/química , Espectroscopia Terahertz , Pressão , Solubilidade , Comprimidos/química , Fatores de Tempo
10.
J Pharm Sci ; 106(3): 859-865, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27986291

RESUMO

Valproic acid is widely used as an antiepileptic agent. Valproic acid is in liquid phase while sodium valproate is in solid phase at room temperature. Sodium valproate is hard to manufacture because of its hygroscopic and deliquescent properties. To improve these, cocrystal and salt screening for valproic acid was employed in this study. Two solid salt forms, l-arginine valproate and l-lysine valproate, were obtained and characterized. By using dynamic vapor sorption method, the critical relative humidity of sodium valproate, l-arginine valproate, and l-lysine valproate were measured. Critical relative humidity of sodium valproate was 40%, of l-lysine valproate was 60%, and of l-arginine valproate was 70%. Single-crystal X-ray structure determination of l-arginine valproate was employed. l-Lysine valproate was of low diffraction quality, and l-arginine valproate formed a 1:1 salt. Crystal l-arginine valproate has a disorder in the methylene carbon chain that creates 2 conformations. The carboxylate group of valproic acid is connected to the amino group of l-arginine. Crystalline morphologies were calculated from its crystal structure. Adsorption of water molecules to crystal facets was simulated by Material Studio. When comparing adsorption energy per site of these salts, sodium valproate is more capable of adsorption of water molecule than l-arginine valproate.


Assuntos
Arginina/química , Ácido Valproico/química , Molhabilidade , Difração de Raios X/métodos , Cristalização/métodos , Cristalografia por Raios X/métodos , Água/química
11.
Chem Pharm Bull (Tokyo) ; 64(8): 1084-91, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27477645

RESUMO

Two creams containing 20% (w/w) urea and various emulsifiers, a nonionic surfactant (NS) and lecithin (LEC), were prepared, and the rate of crystallization following application of the cream and differences in the properties of the deposits were investigated. Post-application crystallization was slower with the LEC formulation. Differences in the crystals obtained from the two formulations and from a 20% aqueous solution of urea were evaluated by powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), powder X-ray-DSC (PXRD-DSC) and Fourier transform infrared spectrophotometry (FT-IR). PXRD and PXRD-DSC measurements showed that the diffraction patterns of both formulations differed from that of urea. The NS formulation provided diffraction peaks for urea and a urea composite, whereas only the urea composite was evident in the LEC formulation. DSC scans of urea showed an endotherm at around 134°C, whereas the deposits from both formulations provided an endotherm 23-25°C below that of urea; the NS formulation also showed a peak at around 140°C. These results indicate a tendency for urea crystallization in the NS formulation. FT-IR measurements showed that both deposits have a urea-based structure. The effects of the LEC formulation components on the physical properties of urea were investigated by PXRD and showed that all diffraction peaks were evenly weakened, suggesting that urea tends to be amorphous and that the formulation impacts post-application urea crystallization. Consequently, the amorphous state of urea can be maintained post-application by optimizing the formulation, thereby increasing the clinical efficacy of the cream.


Assuntos
Lecitinas/química , Tensoativos/química , Ureia/química , Cristalização , Emulsões/química , Lecitinas/síntese química , Tensoativos/síntese química
12.
Chem Pharm Bull (Tokyo) ; 64(8): 1092-8, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27477646

RESUMO

The transfer of urea from a urea formulation to the stratum corneum varies with the formulation base and form, and impacts the formulation's therapeutic effect. Consequently, determining the amount of urea transferred is essential for developing efficient formulations. This study assessed a simple method for measuring the amount of urea accumulated in the stratum corneum. Conventional methods rely on labeling urea used in the formulation with radiocarbon ((14)C) or other radioactive isotopes (RIs), retrieving the transferred urea from the stratum corneum by tape stripping, then quantitating the urea. The handling and use of RIs, however, is subject to legal regulation and can only be performed in sanctioned facilities, so methods employing RIs are neither simple nor convenient. We therefore developed a non-radiolabel method "tape stripping-colorimetry (T-C)" that combines tape stripping with colorimetry (urease-glutamate dehydrogenase (GLDH)) for the quantitative measurement of urea. Urea in the stratum corneum is collected by tape stripping and measured using urease-GLDH, which is commonly used to measure urea nitrogen in blood tests. The results indicate that accurate urea measurement by the T-C method requires the application of 1400 mg (on hairless rats) of a 20% urea solution on a 50 cm(2) (5×10 cm) area. Further, we determined the amount of urea accumulated in the stratum corneum using formulations with different urea concentrations, and the time course of urea accumulation from formulations differing in the rate of urea crystallization. We demonstrate that the T-C method is simple and convenient, with no need for (14)C or other RIs.


Assuntos
Colorimetria/métodos , Epiderme/química , Creme para a Pele/química , Ureia/análise , Animais , Química Farmacêutica , Cristalização , Epiderme/metabolismo , Glutamato Desidrogenase/metabolismo , Masculino , Ratos , Ratos Pelados , Ureia/metabolismo , Urease/metabolismo
13.
Chem Pharm Bull (Tokyo) ; 64(8): 1099-107, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27477647

RESUMO

In drug formulations for external application, variations in the state of pharmaceutical agents within the base formulation may affect the transfer of agents to the skin. Here, we use Raman spectroscopic methods to acquire more detailed information on the state of the active pharmaceutical ingredients within an externally applied formulation. The combination of wide-field Raman spectroscopy with an experimental method in which drug formulations are applied to glass surfaces provided a new method for characterizing the state of pharmaceutical agents within drug formulations. Here, we demonstrate the usefulness of this new method, called application to glass-wide-field Raman spectroscopy (AG-WRS). In addition to allowing rapid and easy wide-field observations, the use of WRS allows Raman imaging in a manner that is insensitive to variations in the thickness of the formulations applied to sample slides. We consider two types of urea-compound creams with different crystal deposition rates, using AG-WRS to characterize the post-application time-evolving state of deposited crystals. Differences in the base pharmaceutical produce different spectra for the deposits, indicating that the deposits differ in composition and structure. In addition, we use microscopic laser Raman measurements to demonstrate that the process of crystal formulation differs significantly for formulations with different compositions. Our results demonstrate that the combination of AG-WRS with existing analytical techniques such as powder X-ray diffraction or thermal analysis yields more detailed and timely post-application information on the state of pharmaceuticals in external application. We believe this will be a valuable analytical tool for future studies related to the development of external application.


Assuntos
Creme para a Pele/química , Análise Espectral Raman/métodos , Ureia/química , Química Farmacêutica , Cristalização , Difração de Pó , Temperatura
14.
Int J Pharm ; 509(1-2): 368-374, 2016 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-27282535

RESUMO

The purpose of this study was to elucidate how co-solutes affect the crystallization of small solute molecules during freeze-drying and subsequent storage. Crystallization profiles of myo-inositol and its mixture with dextran 40k in frozen solutions and dried solids were assessed by thermal analysis (DSC), powder-X-ray diffraction, and simultaneous DSC and PXRD analysis. Higher mass ratios of dextran maintained myo-inositol in the non-crystalline mixture state, in frozen solutions, during freeze-drying process, and exposure of dried solids to higher temperatures. Co-lyophilization with a lower mass ratio of dextran resulted in solids containing a variety of myo-inositol crystal forms and crystallinity depending on the composition and thermal history of the process. Heating of some inositol-rich amorphous solids showed crystallization of myo-inositol in the metastable form and its transition to stable form before melting. Heat-treatment of inositol-rich frozen solutions resulted in high crystallinity stable-form inositol solids, leaving dextran in the amorphous state. Sufficient direct molecular interactions (e.g., hydrogen bonding) should explain the stability of dextran-rich amorphous solids. Optimizing solute composition and processes should be a potent way to control crystal form and crystallinity of components in freeze-dried formulations.


Assuntos
Inositol/química , Soluções/química , Química Farmacêutica/métodos , Cristalização/métodos , Dextranos/química , Excipientes/química , Liofilização/métodos , Congelamento , Ligação de Hidrogênio , Temperatura de Transição
15.
Mol Pharm ; 13(8): 2711-7, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27341490

RESUMO

The purpose of the present study was to investigate the effect of seed particles on the precipitation behavior of weak base drugs in the small intestine. A simple in vitro infusion method was used to mimic in vivo processes. Dipyridamole, pioglitazone, topiroxostat, chlorpromazine, cinnarizine, and ketoconazole were used as model drugs. A drug was dissolved in 0.01 N HCl and infused into a pH 6.5 buffer. The existence of seed particles significantly affected the concentration-time profiles of the model drugs in the buffer. The maximum concentration was significantly reduced in the presence of seed particles (except for cinnarizine). In the case of dipyridamole, pioglitazone, and topiroxostat, the precipitants were crystalline from the beginning of precipitation. In contrast, the precipitants of ketoconazole, cinnarizine, and chlorpromazine were a mixture of amorphous and crystals. In conclusion, the presence of seed particles significantly affected the precipitation behavior of weak base drugs.


Assuntos
Intestino Delgado/metabolismo , Animais , Clorpromazina/química , Cinarizina/química , Dipiridamol/química , Humanos , Absorção Intestinal , Cetoconazol/química , Estrutura Molecular , Nitrilas/química , Pioglitazona , Piridinas/química , Solubilidade , Tiazolidinedionas/química
16.
Chem Pharm Bull (Tokyo) ; 64(3): 215-21, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26936048

RESUMO

In the pharmaceutical tablet film coating process, we clarified that a difference in exhaust air relative humidity can be used to detect differences in process parameters values, the relative humidity of exhaust air was different under different atmospheric air humidity conditions even though all setting values of the manufacturing process parameters were the same, and the water content of tablets was correlated with the exhaust air relative humidity. Based on this experimental data, the exhaust air relative humidity index (EHI), which is an empirical equation that includes as functional parameters the pan coater type, heated air flow rate, spray rate of coating suspension, saturated water vapor pressure at heated air temperature, and partial water vapor pressure at atmospheric air pressure, was developed. The predictive values of exhaust relative humidity using EHI were in good correlation with the experimental data (correlation coefficient of 0.966) in all datasets. EHI was verified using the date of seven different drug products of different manufacturing scales. The EHI model will support formulation researchers by enabling them to set film coating process parameters when the batch size or pan coater type changes, and without the time and expense of further extensive testing.


Assuntos
Modelos Teóricos , Preparações Farmacêuticas , Química Farmacêutica , Umidade , Limite de Detecção , Comprimidos
17.
Chem Pharm Bull (Tokyo) ; 64(3): 222-7, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26936049

RESUMO

The purpose of this study was to measure the tablet velocity in pan coating machines during the film coating process in order to understand the impact of the batch size (laboratory to commercial scale), coating machine type (DRIACOATER, HICOATER® and AQUA COATER®) and manufacturing conditions on tablet velocity. We used a high speed camera and particle image velocimetry to measure the tablet velocity in the coating pans. It was observed that increasing batch sizes resulted in increased tablet velocities under the same rotation number because of the differences in circumferential rotation speeds. We also observed the tendency that increase in the filling ratio of tablets resulted in an increased tablet velocity for all coating machines. Statistical analysis was used to make a tablet velocity predictive equation by employing the filling ratio and rotation speed as the parameters from these measured values. The correlation coefficients of predicted value and experimental value were more than 0.959 in each machine. Using the predictive equation to determine tablet velocities, the manufacturing conditions of previous products were reviewed, and it was found that the tablet velocities of commercial scales, in which tablet chipping and breakage problems had occurred, were higher than those of pilot scales or laboratory scales.


Assuntos
Química Farmacêutica , Comprimidos
18.
Chem Pharm Bull (Tokyo) ; 64(2): 150-60, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26656229

RESUMO

To understand the risk of particle formation in glass vials, we investigated the correlation between vial surface condition and alminum (Al) or silicon (Si) elution using various suppliers' vials with or without surface treatment. The elution of Si, which can also be an indicator of Al elution, consists of two phases; the first phase is influenced by roughness of the glass surface at the time of filling, and the second phase is dependent on the fundamental elution rate from the glass tube. When vials were filled with citrate buffer at pH 7, vials with varied surface conditions showed the most obvious differences in Al and Si elution. Sulfur-treated vials showed slightly lower Al and Si elution than the non-treated vials. It is considered that this effect of the sulfur treatment on elution is due to the surface being smoothed during heat treatment after the washing process. Different from the sulfur treatment, silicon dioxide (SiO2)-coated vials hardly showed any Al elution as long as the surface was fully coated with the SiO2 layer. It was found that the protective effect of the SiO2 layer against Al elution is more effective in a vial filled with a solution having a lower pH, due to the lower Si dissolving rate occurring at a lower pH. As shown above, pre-measuring the Si and Al present in a citrate buffer at pH 7 placed within a glass container can be a useful tool for selecting the appropriate container for liquid drugs.


Assuntos
Alumínio/química , Vidro/química , Dióxido de Silício/química , Temperatura Alta , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Propriedades de Superfície
19.
J Pharm Biomed Anal ; 119: 104-13, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26678177

RESUMO

Film-coated tablets (FCTs) are a popular solid dosage form in pharmaceutical industry. Manufacturing conditions during the film-coating process affect the properties of the film layer, which might result in critical quality problems. Here, we analyzed the properties of the film layer using a non-destructive approach with terahertz pulsed imaging (TPI). Hydrophilic tablets that become distended upon water absorption were used as core tablets and coated with film under different manufacturing conditions. TPI-derived parameters such as film thickness (FT), film surface reflectance (FSR), and interface density difference (IDD) between the film layer and core tablet were affected by manufacturing conditions and influenced critical quality attributes of FCTs. Relative standard deviation of FSR within tablets correlated well with surface roughness. Tensile strength could be predicted in a non-destructive manner using the multivariate regression equation to estimate the core tablet density by film layer density and IDD. The absolute value of IDD (Lateral) correlated with the risk of cracking on the lateral film layer when stored in a high-humidity environment. Further, in-process control was proposed for this value during the film-coating process, which will enable a feedback control system to be applied to process parameters and reduced risk of cracking without a stability test.


Assuntos
Comprimidos com Revestimento Entérico/normas , Tecnologia Farmacêutica/métodos , Imagem Terahertz/métodos , Excipientes/química , Propriedades de Superfície , Resistência à Tração
20.
Int J Pharm ; 495(2): 642-50, 2015 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-26420435

RESUMO

The purpose of this study was to clarify the mechanism responsible for high-shear wet granulation using time-of-flight secondary ion mass spectrometry (ToF-SIMS), which can be used for surface chemical mapping. A total of 15 kinds of granules, including hydroxypropylcellulose (HPC) as a binder, were obtained in a model formulation using different granulation conditions, such as the amount of sprayed water and the granulation time. Surface chemical mapping of these granules was then performed using a ToF-SIMS analysis, which distinguishes each component by detecting the specific mass-to-charge ratio (m/z). As a result, we found that HPC got to appear on the surface of granule with proceeding wet granulation. By considering this result, we concluded that the distributions of HPC might be closely related to the progress of granule consolidation and growth in wet granulation. Therefore, the progress of granulation can likely be understood by measuring the content of HPC on the granule surface.


Assuntos
Celulose/análogos & derivados , Química Farmacêutica/métodos , Excipientes/química , Espectrometria de Massa de Íon Secundário/métodos , Celulose/química , Composição de Medicamentos/métodos , Propriedades de Superfície , Tecnologia Farmacêutica/métodos , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...