Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 193(11): 5660-7, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25339677

RESUMO

Neutrophils are highly motile leukocytes that play important roles in the innate immune response to invading pathogens. Neutrophils rapidly migrate to the site of infections and kill pathogens by producing reactive oxygen species (ROS). Neutrophil chemotaxis and ROS production require activation of Rac small GTPase. DOCK2, an atypical guanine nucleotide exchange factor (GEF), is one of the major regulators of Rac in neutrophils. However, because DOCK2 deficiency does not completely abolish fMLF-induced Rac activation, other Rac GEFs may also participate in this process. In this study, we show that DOCK5 acts with DOCK2 in neutrophils to regulate multiple cellular functions. We found that fMLF- and PMA-induced Rac activation were almost completely lost in mouse neutrophils lacking both DOCK2 and DOCK5. Although ß2 integrin-mediated adhesion occurred normally even in the absence of DOCK2 and DOCK5, mouse neutrophils lacking DOCK2 and DOCK5 exhibited a severe defect in chemotaxis and ROS production. Similar results were obtained when human neutrophils were treated with CPYPP, a small-molecule inhibitor of these DOCK GEFs. Additionally, we found that DOCK2 and DOCK5 regulate formation of neutrophil extracellular traps (NETs). Because NETs are involved in vascular inflammation and autoimmune responses, DOCK2 and DOCK5 would be a therapeutic target for controlling NET-mediated inflammatory disorders.


Assuntos
Armadilhas Extracelulares/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Neutrófilos/fisiologia , Proteínas rac de Ligação ao GTP/metabolismo , Animais , Células Cultivadas , Quimiotaxia/efeitos dos fármacos , Quimiotaxia/genética , Proteínas Ativadoras de GTPase/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Terapia de Alvo Molecular , Neutrófilos/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Pirazóis/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo
2.
J Exp Med ; 211(7): 1407-19, 2014 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-24913231

RESUMO

Mast cells play a key role in the induction of anaphylaxis, a life-threatening IgE-dependent allergic reaction, by secreting chemical mediators that are stored in secretory granules. Degranulation of mast cells is triggered by aggregation of the high-affinity IgE receptor, FcεRI, and involves dynamic rearrangement of microtubules. Although much is known about proximal signals downstream of FcεRI, the distal signaling events controlling microtubule dynamics remain elusive. Here we report that DOCK5, an atypical guanine nucleotide exchange factor (GEF) for Rac, is essential for mast cell degranulation. As such, we found that DOCK5-deficient mice exhibit resistance to systemic and cutaneous anaphylaxis. The Rac GEF activity of DOCK5 is surprisingly not required for mast cell degranulation. Instead, DOCK5 associated with Nck2 and Akt to regulate microtubule dynamics through phosphorylation and inactivation of GSK3ß. When DOCK5-Nck2-Akt interactions were disrupted, microtubule formation and degranulation response were severely impaired. Our results thus identify DOCK5 as a key signaling adaptor that orchestrates remodeling of the microtubule network essential for mast cell degranulation.


Assuntos
Degranulação Celular/imunologia , Fatores de Troca do Nucleotídeo Guanina/imunologia , Mastócitos/imunologia , Microtúbulos/imunologia , Receptores de IgE/imunologia , Transdução de Sinais/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Degranulação Celular/genética , Células Cultivadas , Fatores de Troca do Nucleotídeo Guanina/genética , Mastócitos/citologia , Camundongos , Camundongos Knockout , Microtúbulos/genética , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/imunologia , Fosforilação/genética , Fosforilação/imunologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/imunologia , Receptores de IgE/genética , Transdução de Sinais/genética
3.
Blood ; 122(3): 386-93, 2013 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-23719299

RESUMO

Natural killer (NK) cells play an important role in protective immunity against viral infection and tumor progression, but they also contribute to rejection of bone marrow grafts via contact-dependent cytotoxicity. Ligation of activating NK receptors with their ligands expressed on target cells induces receptor clustering and actin reorganization at the interface and triggers polarized movement of lytic granules to the contact site. Although activation of the small GTPase Rac has been implicated in NK cell-mediated cytotoxicity, its precise role and the upstream regulator remain elusive. Here, we show that DOCK2, an atypical guanine nucleotide exchange factor for Rac, plays a key role in NK cell-mediated cytotoxicity. We found that although DOCK2 deficiency in NK cells did not affect conjugate formation with target cells, DOCK2-deficienct NK cells failed to effectively kill leukemia cells in vitro and major histocompatibility complex class I-deficient bone marrow cells in vivo, regardless of the sorts of activating receptors. In DOCK2-deficient NK cells, NKG2D-mediated Rac activation was almost completely lost, resulting in a severe defect in the lytic synapse formation. Similar results were obtained when the Rac guanine nucleotide exchange factor activity of DOCK2 was selectively abrogated. These results indicate that DOCK2-Rac axis controls NK cell-mediated cytotoxicity through the lytic synapse formation.


Assuntos
Citotoxicidade Imunológica , Proteínas Ativadoras de GTPase/metabolismo , Sinapses Imunológicas/metabolismo , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Proteínas rac de Ligação ao GTP/metabolismo , Animais , Transplante de Medula Óssea , Membrana Celular/metabolismo , Citocinas/biossíntese , Ativação Enzimática , Proteínas Ativadoras de GTPase/deficiência , Fatores de Troca do Nucleotídeo Guanina , Antígenos de Histocompatibilidade Classe I/imunologia , Células Matadoras Naturais/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/metabolismo
4.
PLoS One ; 7(9): e46277, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23050005

RESUMO

The migratory properties of lymphocytes depend on DOCK2, an atypical Rac activator predominantly expressed in hematopoietic cells. Although DOCK2 does not contain the Dbl homology domain typically found in guanine nucleotide exchange factors (GEFs), DOCK2 mediates the GTP-GDP exchange reaction for Rac via its DOCK homology region (DHR)-2 (also known as CZH2 or Docker) domain. DOCK2 DHR-2 domain is composed of three lobes, and Rac binding site and catalytic center are generated entirely from lobes B and C. On the other hand, lobe A has been implicated in dimer formation, yet its physiological significance remains unknown. Here, we report that lobe A-mediated DOCK2 dimerization is crucial for Rac activation and lymphocyte migration. We found that unlike wild-type DOCK2, DOCK2 mutant lacking lobe A failed to restore motility and polarity when expressed in thymoma cells and primary T cells lacking endogenous expression of DOCK2. Similar results were obtained with the DOCK2 point mutant having a defect in dimerization. Deletion of lobe A from the DHR-2 domain did not affect Rac GEF activity in vitro. However, fluorescence resonance energy transfer analyses revealed that lobe A is required for DOCK2 to activate Rac effectively during cell migration. Our results thus indicate that DOCK2 dimerization is functionally important under the physiological condition where only limited amounts of DOCK2 and Rac are localized to the plasma membrane.


Assuntos
Movimento Celular/fisiologia , Proteínas Ativadoras de GTPase/metabolismo , Linfócitos/citologia , Linfócitos/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Animais , Linhagem Celular , Movimento Celular/genética , Proteínas Ativadoras de GTPase/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Imunoprecipitação , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Microscopia de Fluorescência , Multimerização Proteica/genética , Multimerização Proteica/fisiologia , Proteínas rac de Ligação ao GTP/genética
5.
Blood ; 119(19): 4451-61, 2012 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-22461490

RESUMO

To migrate efficiently through the interstitium, dendritic cells (DCs) constantly adapt their shape to the given structure of the extracellular matrix and follow the path of least resistance. It is known that this amoeboid migration of DCs requires Cdc42, yet the upstream regulators critical for localization and activation of Cdc42 remain to be determined. Mutations of DOCK8, a member of the atypical guanine nucleotide exchange factor family, causes combined immunodeficiency in humans. In the present study, we show that DOCK8 is a Cdc42-specific guanine nucleotide exchange factor that is critical for interstitial DC migration. By generating the knockout mice, we found that in the absence of DOCK8, DCs failed to accumulate in the lymph node parenchyma for T-cell priming. Although DOCK8-deficient DCs migrated normally on 2-dimensional surfaces, DOCK8 was required for DCs to crawl within 3-dimensional fibrillar networks and to transmigrate through the subcapsular sinus floor. This function of DOCK8 depended on the DHR-2 domain mediating Cdc42 activation. DOCK8 deficiency did not affect global Cdc42 activity. However, Cdc42 activation at the leading edge membrane was impaired in DOCK8-deficient DCs, resulting in a severe defect in amoeboid polarization and migration. Therefore, DOCK8 regulates interstitial DC migration by controlling Cdc42 activity spatially.


Assuntos
Imunidade Adaptativa/genética , Movimento Celular/genética , Células Dendríticas/fisiologia , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Proteína cdc42 de Ligação ao GTP/metabolismo , Imunidade Adaptativa/imunologia , Animais , Técnicas de Cultura de Células , Movimento Celular/imunologia , Células Cultivadas , Células Dendríticas/metabolismo , Feminino , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
6.
Blood ; 119(1): 83-94, 2012 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-22096247

RESUMO

Throughout life, one's blood supply depends on sustained division of hematopoietic stem cells (HSCs) for self-renewal and differentiation. Within the bone marrow microenvironment, an adhesion-dependent or -independent niche system regulates HSC function. Here we show that a novel adhesion-dependent mechanism via integrin-ß3 signaling contributes to HSC maintenance. Specific ligation of ß3-integrin on HSCs using an antibody or extracellular matrix protein prevented loss of long-term repopulating (LTR) activity during ex vivo culture. The actions required activation of αvß3-integrin "inside-out" signaling, which is dependent on thrombopoietin (TPO), an essential cytokine for activation of dormant HSCs. Subsequent "outside-in" signaling via phosphorylation of Tyr747 in the ß3-subunit cytoplasmic domain was indispensable for TPO-dependent, but not stem cell factor-dependent, LTR activity in HSCs in vivo. This was accompanied with enhanced expression of Vps72, Mll1, and Runx1, 3 factors known to be critical for maintaining HSC activity. Thus, our findings demonstrate a mechanistic link between ß3-integrin and TPO in HSCs, which may contribute to maintenance of LTR activity in vivo as well as during ex vivo culture.


Assuntos
Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Integrina alfaVbeta3/fisiologia , Transdução de Sinais , Trombopoetina/farmacologia , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Biomarcadores/metabolismo , Western Blotting , Medula Óssea/efeitos dos fármacos , Medula Óssea/metabolismo , Comunicação Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Citometria de Fluxo , Perfilação da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos
7.
Biochem Biophys Res Commun ; 377(2): 589-594, 2008 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-18854170

RESUMO

Antigen-transporting cells take up pathogens, and then migrate from sites of inflammation to secondary lymphoid tissues to induce an immune response. Among antigen-transporting cells, dendritic cells (DCs) are believed to be the most potent and professional antigen-presenting cells that can stimulate naïve T cells. However, the cells that transport antigens, tumor cell antigens in particular, have not been clearly identified. In this study we have analyzed what types of cells transport tumor cell antigens to secondary lymphoid tissues. We show that neutrophils, monocytes and macrophages but not DCs engulf X-irradiated P388 leukemic cells after their injection into the peritoneal cavity, and that neutrophils and monocytes but not macrophages migrate to the parathymic lymph nodes (pLN), the blood, and then the spleen. The monocytes in the pLN comprise Gr-1(-) and Gr-1(+) ones, and some of these cells express CD11c. Overall, this study demonstrates that neutrophils and monocytes transport tumor cell antigens from the peritoneal cavity to secondary lymphoid tissues.


Assuntos
Antígenos de Neoplasias/imunologia , Linfonodos/imunologia , Monócitos/imunologia , Neutrófilos/imunologia , Cavidade Peritoneal , Baço/imunologia , Animais , Linhagem Celular Tumoral , Movimento Celular , Macrófagos/imunologia , Camundongos , Transporte Proteico , Receptores de Quimiocinas/genética
8.
Biochem Biophys Res Commun ; 365(1): 176-82, 2008 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-17983596

RESUMO

Among the subsets that define hematopoietic stem cells (HSCs), CD34- c-kit+ Sca-1+ lineage marker- (CD34-KSL) cells are regarded as one of the populations that have the highest enrichment of HSCs in adult mouse bone marrow. Here, we demonstrate that long-term repopulating hematopoietic stem cells (LTR-HSCs) have high expression of CD61 (integrin beta3) within the CD34-KSL population. Approximately 60% of CD34-KSL cells showed high expression of CD61. CD61HighCD34-KSL populations also exhibited significantly greater properties of HSC, such as expression of HSC markers, the side population (SP) phenotype, and ability for long-term repopulation. In both SP cells and non-SP (NSP) cells, CD61HighCD34-KSL cells also contained significantly more LTR-HSCs than CD61Low/-CD34-KSL cells. Our results indicate that CD61 is exploitable for HSC enrichment as a supportive positive cell surface marker.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Integrina beta3/metabolismo , Animais , Antígenos CD34/imunologia , Antígenos CD34/metabolismo , Células Cultivadas , Citometria de Fluxo , Integrina beta3/imunologia , Camundongos , Camundongos Endogâmicos C57BL
9.
Biochem Biophys Res Commun ; 361(2): 533-6, 2007 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-17662241

RESUMO

Although necrotic cells are known to induce inflammation in vivo, the underlying mechanism remains largely unexplored. In order to examine the mechanism, we used an inflammation model induced by injection of necrotic leukemic P388 cells into the peritoneal cavity in this study. The injection of necrotic cells induced the infiltration of neutrophils and subsequently that of monocytes/macrophages. In agreement with this, the injection also induced the production of KC and MIP-2, and subsequently that of MCP-1. Although the level of KC was higher than that of MIP-2, both anti-KC Ab and anti-MIP-2 Ab significantly inhibited the infiltration of neutrophils. Antibodies against CXCR2, a sole receptor for KC and MIP-2, almost completely inhibited the infiltration of neutrophils and monocytes/macrophages. Anti-MCP-1 Ab, on the other hand, inhibited the infiltration of monocytes/macrophages but not neutrophils. These results indicate that KC and MIP-2 play important roles in the infiltration of neutrophils into the site of injection of necrotic cells and that neutrophils may regulate monocyte/macrophage infiltration in our model.


Assuntos
Quimiocina CCL2/metabolismo , Quimiocinas CXC/metabolismo , Monocinas/metabolismo , Necrose/patologia , Infiltração de Neutrófilos , Cavidade Peritoneal/patologia , Animais , Anticorpos , Quimiocina CXCL1 , Quimiocina CXCL2 , Injeções , Masculino , Camundongos , Testes de Neutralização , Receptores de Quimiocinas/metabolismo , Fatores de Tempo
10.
J Immunol ; 177(11): 7733-9, 2006 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17114444

RESUMO

With significant attention paid to the field of tissue-specific stem cells, the identification of stem cell-specific markers is of considerable importance. Previously, the side population (SP) phenotype, with the capacity to efflux the DNA-binding dye Hoechst 33342, has been recognized as a common feature of adult tissue-specific stem cells. In this study, we show that high expression of integrin beta(3) (CD61) is an attribute of SP cells isolated from mouse bone marrow. Additionally, we confirmed that the expression of integrin beta(3) is correlated with properties of quiescent hemopoietic stem cells (HSCs) including the strength of the SP phenotype, cell cycle arrest, expression of HSC markers, and long-term hemopoiesis. Importantly, Lineage(-) (Lin(-))/integrin beta(3)(high) (beta(3)(high)) SP cells have as strong a capacity for long-term hemopoiesis as c-Kit(+)/Sca-1(+)/Lin(-) SP cells, which are regarded as one of the most highly enriched HSC populations. Finally, the integrin beta(3) subunit that is present in SP cells having the properties of HSCs, is associated with integrin alpha(v) (CD51). Therefore, our results demonstrate that high expression of integrin beta(3) is correlated to the properties of quiescent HSCs and suggest that the integrin beta(3) subunit is available as a common surface marker of tissue-specific stem cells.


Assuntos
Biomarcadores/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Integrina beta3/biossíntese , Fenótipo , Animais , Western Blotting , Células da Medula Óssea/metabolismo , Citometria de Fluxo , Expressão Gênica , Imunoprecipitação , Integrina alfa5/metabolismo , Camundongos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...