Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
MethodsX ; 2: 91-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26150976

RESUMO

Most often the determination of the concentration of virus particles is rendered difficult by the availability of proper standards. We have adapted a static light scattering based method for the quantification of virus particles (shown for poliovirus) without the need of virus particle standards. Instead, as standards, well-characterized polymeric nanoparticle solutions are used. The method is applicable for virus particles acting as Rayleigh scatterers, i.e., virus particles with equivalent diameters up to ca. 1/10th of the wavelength of the scattered monochromatic light (∼70 nm diameter). Further limitations may arise if the refractive index of the virus is unavailable or cannot be calculated based on its composition, such as in case of enveloped viruses. The method is especially relevant for preparation of virus particle concentration standards and to vaccine formulations based on attenuated or inactivated virus particles where the classical plaque forming assays cannot be applied. The method consists of: •Measuring the intensity of the light scattered by viruses suspended in an aqueous solution.•Measuring the intensity of the light scattered by polymeric nanoparticles of known concentration and comparable size with the investigated virus particle.•The concentration of virus nanoparticles can be calculated based on the two measured scattered light intensities by knowing the refractive index of the dispersing solution, of the polymer and virus nanoparticles as well as their relative sphere equivalent diameters.

2.
Anal Chem ; 86(10): 4688-97, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24773609

RESUMO

The feasibility of using quartz nanopipets as simple and cost-effective Coulter counters for calibration-less quantitation and sizing of nanoparticles by resistive pulsing sensing (RPS) was investigated. A refined theory was implemented to calculate the size distribution of nanoparticles based on the amplitude of resistive pulses caused by their translocation through nanopipets of known geometry. The RPS provided diameters of monodisperse latex nanoparticles agreed within the experimental error with those measured by using scanning electron microscopy (SEM), dynamic light scattering (DLS), and nanoparticle tracking analysis (NTA). The nanopipet-based counter, by detecting individual nanoparticles, could resolve with similar resolution as SEM mixtures of monodisperse nanoparticles having partially overlapping size distributions, which could not be discriminated by DLS or NTA. Furthermore, by calculating the hydrodynamic resistance of the nanopipets and consequently the volume flow through the tip enabled for the first time the calibration-less determination of nanoparticle concentrations with nanopipets. The calibration-less methodology is applied to sizing and quantitation of inactivated poliovirus of ~26 nm diameter, which is the smallest size spherical shape virus ever measured by resistive pulse sensing.


Assuntos
Nanopartículas , Nanotecnologia/instrumentação , Nanotecnologia/métodos , Vírus/ultraestrutura , Calibragem , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Poliovirus/ultraestrutura , Quartzo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...