Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 18(40): 28198-28208, 2016 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-27722590

RESUMO

We present a theoretical investigation of small aggregates of quadrupolar (A-π-D-π-A or D-π-A-π-D) charge-transfer dyes, with attention focused on the role of intermolecular interactions in determining their optical properties. We tackle the theoretical issue by adopting essential-state models (ESMs), which describe an isolated molecule in terms of a minimal number of electronic states, corresponding to the resonance structures. ESMs quite naturally describe intermolecular interactions relaxing the dipolar approximation and accounting for molecular polarizabilities. The approach is applied to curcuminoid and squaraine dyes, two families of chromophores with weak and strong quadrupolar character, respectively. The method is validated against experiment and for curcuminoids also against time-dependent density functional theory. ESMs rationalize the strong ultra-excitonic effects recurrently observed in the experimental optical spectra of aggregates of highly polarizable quadrupolar dyes, offering a valuable tool to exploit the supramolecular design of material properties.

2.
Phys Chem Chem Phys ; 17(19): 13074-81, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25912698

RESUMO

We calculate 2D electronic-vibrational (2D-EV) spectra of solvated organic dyes modeled in terms of a reduced set of electronic diabatic states (the essential states) non-adiabatically coupled to molecular vibrations. An effective overdamped coordinate, whose dynamics is described by the Smoluchowski diffusion equation, accounts for polar solvation. Results are discussed for two dyes with distinctively different spectroscopic behavior: 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM) and 8-(N,N-dibutylamino)-2-azachrysene (AAC). Linear absorption and fluorescence spectra of DCM are well reproduced based on a minimal two-state model. The same model leads to 2D-EV spectra in good agreement with the recent experimental data reported by Oliver and coworkers for DCM in DMSO. In contrast, linear spectra of AAC show a subtle interplay between a locally-excited (LE) and a charge-transfer (CT) excitation, calling for a three-state model. Calculated 2D-EV spectra for AAC show a qualitatively different behavior, demonstrating that the experimental data for DCM do not support a LE/CT interplay. This resolves the long-lasting discussion about the nature of low-lying excitations of DCM in favor of the simplest picture.

3.
Phys Chem Chem Phys ; 13(28): 12734-44, 2011 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-21677974

RESUMO

Resonance Energy Transfer (RET) is investigated in pairs of charge-transfer (CT) chromophores. CT chromophores are an interesting class of π conjugated chromophores decorated with one or more electron-donor and acceptor groups in polar (D-π-A), quadrupolar (D-π-A-π-D or A-π-D-π-A) or octupolar (D(-π-A)(3) or A(-π-D)(3)) structures. Essential-state models accurately describe low-energy linear and nonlinear spectra of CT-chromophores and proved very useful to describe spectroscopic effects of electrostatic interchromophore interactions in multichromophoric assemblies. Here we apply the same approach to describe RET between CT-chromophores. The results are quantitatively validated by an extensive comparison with time-dependent density functional theory (TDDFT) calculations, confirming that essential-state models offer a simple and reliable approach for the calculation of electrostatic interchromophore interactions. This is an important result since it sets the basis for more refined treatments of RET: essential-state models are in fact easily extended to account for molecular vibrations in truly non-adiabatic approaches and to account for inhomogeneous broadening effects due to polar solvation. Optically forbidden (dark) states of quadrupolar and octupolar chromophores offer an interesting opportunity to verify the reliability of the dipolar approximation. In striking contrast with the dipolar approximation that strictly forbids RET towards or from dark states, our results demonstrate that dark states can take an active role in RET with interaction energies that, depending on the relative orientation of the chromophores, can be even larger than those relevant to allowed states. Essential-state models, whose predictions are quantitatively confirmed by TDDFT results, allow us to relate RET interaction energies towards allowed and dark states to the supramolecular symmetry of the RET-pair, offering reliable design strategies to optimize RET-interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...