Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 44(10): 4019-25, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20429594

RESUMO

Chinese tallow tree (TT) seeds are a rich source of lipids and have the potential to be a biodiesel feedstock, but currently, its invasive nature does not favor large scale cultivation. Being a nonfood material, they have many advantages over conventional crops that are used for biodiesel production. The purpose of this study was to determine optimal oil extraction parameters in a batch-type and laboratory scale continuous-flow microwave system to obtain maximum oil recovery from whole TT seeds using ethanol as the extracting solvent. For the batch system, extractions were carried out for different time-temperature combinations ranging from 60 to 120 degrees C for up to 20 min. The batch system was modified for continuous extractions, which were carried out at 50, 60, and 73 degrees C and maintained for various residence times of up to 20 min. Control runs were performed under similar extraction conditions and the results compared well, especially when accounting for extremely short extraction times (minutes vs hours). Maximum yields of 35.32% and 32.51% (by weight of dry mass) were obtained for the continuous and batch process, respectively. The major advantage of microwave assisted solvent extraction is the reduced time of extraction required to obtain total recoverable lipids, with corresponding reduction in energy consumption costs per unit of lipid extracted. This study indicates that microwave extraction using ethanol as a solvent can be used as a viable alternative to conventional lipid extraction techniques for TT seeds.


Assuntos
Biocombustíveis , Micro-Ondas , Sementes , Árvores/embriologia
2.
Bioresour Technol ; 101(16): 6510-6, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20395139

RESUMO

Microwaves can be a more efficient method than traditional thermal treatment to deliver the energy required for heating in solvent-oil extraction due to its volumetric, direct coupling with the material. An understanding of the behavior of dielectric properties of solvent-feedstock mixtures is important for designing and optimizing any microwave-based extraction process. In this study rice bran and soybean flour were mixed separately with four different solvents (methanol, ethanol, hexane and isopropanol) at different ratios (1:2, 1:1, 2:1 w/w). For the samples mixed with ethanol, the dielectric properties were measured at 23, 30, 40 and 50 degrees C, while for all other sample-solvent mixtures experiments were performed at room temperature. Dielectric properties were determined using a vector network analyzer and dielectric probe kit using the open-ended coaxial probe method in the frequency range of 300 MHz to 3 GHz. Results from the study indicate that dielectric constants were dependent on frequency and were strongly influenced by temperature, mix ratio and solvent type. The dielectric loss of all mixtures except those with hexane (which were virtually zero) varied with frequency and temperature, solvent type, and mix ratio. Most of the results presented are emphasized at 433, 915 and 2450 MHz, frequencies allocated by the Federal Communication Commission (F.C.C.) for microwave applications. The results of the study, presented here for the first time to our knowledge, will help in selection of appropriate solvent, mixing ratio and frequency for designing microwave-assisted oil extraction systems.


Assuntos
Eletricidade , Micro-Ondas , Óleos/química , Oryza/química , Solventes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...