Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Neurosci ; 23(1): 58, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36217122

RESUMO

BACKGROUND: Opioids are among the most effective and commonly prescribed analgesics for the treatment of acute pain after spinal cord injury (SCI). However, morphine administration in the early phase of SCI undermines locomotor recovery, increases cell death, and decreases overall health in a rodent contusion model. Based on our previous studies we hypothesize that morphine acts on classic opioid receptors to alter the immune response. Indeed, we found that a single dose of intrathecal morphine increases the expression of activated microglia and macrophages at the injury site. Whether similar effects of morphine would be seen with repeated intravenous administration, more closely simulating clinical treatment, is not known. METHODS: To address this, we used flow cytometry to examine changes in the temporal expression of microglia and macrophages after SCI and intravenous morphine. Next, we explored whether morphine changed the function of these cells through the engagement of cell-signaling pathways linked to neurotoxicity using Western blot analysis. RESULTS: Our flow cytometry studies showed that 3 consecutive days of morphine administration after an SCI significantly increased the number of microglia and macrophages around the lesion. Using Western blot analysis, we also found that repeated administration of morphine increases ß-arrestin, ERK-1 and dynorphin (an endogenous kappa opioid receptor agonist) production by microglia and macrophages. CONCLUSIONS: These results suggest that morphine administered immediately after an SCI changes the innate immune response by increasing the number of immune cells and altering neuropeptide synthesis by these cells.


Assuntos
Morfina , Traumatismos da Medula Espinal , Analgésicos/farmacologia , Analgésicos Opioides/farmacologia , Animais , Dinorfinas/metabolismo , Dinorfinas/farmacologia , Dinorfinas/uso terapêutico , Macrófagos , Microglia/patologia , Morfina/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Opioides kappa/metabolismo , Receptores Opioides kappa/uso terapêutico , Recuperação de Função Fisiológica , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , beta-Arrestinas/metabolismo , beta-Arrestinas/farmacologia , beta-Arrestinas/uso terapêutico
2.
Brain Behav Immun ; 79: 125-138, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30684649

RESUMO

Opioids are among the most effective and widely prescribed medications for the treatment of pain following spinal cord injury (SCI). Spinally-injured patients receive opioids within hours of arrival at the emergency room, and prolonged opioid regimens are often employed for the management of post-SCI chronic pain. However, previous studies in our laboratory suggest that the effects of opioids such as morphine may be altered in the pathophysiological context of neurotrauma. Specifically, we have shown that morphine administration in a rodent model of SCI increases mortality and tissue loss at the injury site, and decreases recovery of motor and sensory function, and overall health, even weeks after treatment. The literature suggests that opioids may produce these adverse effects by acting as endotoxins and increasing glial activation and inflammation. To better understand the effects of morphine following SCI, in this study we used flow cytometry to assess immune-competent cells at the lesion site. We observed a morphine-induced increase in the overall number of CD11b+ cells, with marked effects on microglia, in SCI subjects. Next, to investigate whether this increase in the inflammatory profile is necessary to produce morphine's effects, we challenged morphine treatment with minocycline. We found that pre-treatment with minocycline reduced the morphine-induced increase in microglia at the lesion site. More importantly, minocycline also blocked the adverse effects of morphine on recovery of function without disrupting the analgesic efficacy of this opioid. Together, our findings suggest that following SCI, morphine may exacerbate the inflammatory response, increasing cell death at the lesion site and negatively affecting functional recovery.


Assuntos
Minociclina/metabolismo , Minociclina/farmacologia , Traumatismos da Medula Espinal/tratamento farmacológico , Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/efeitos adversos , Analgésicos Opioides/farmacologia , Animais , Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Microglia/metabolismo , Morfina/efeitos adversos , Morfina/metabolismo , Morfina/farmacologia , Dor/metabolismo , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/efeitos dos fármacos , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...