Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Photochem Photobiol Sci ; 22(4): 729-744, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36495407

RESUMO

Pancreatic ductal adenocarcinomas (PDAC) are the fourth leading cause of death due to neoplasms. In view of the urgent need of effective treatments for PDAC, photodynamic therapy (PDT) appears as a promising alternative. However, its efficacy against PDAC and the mechanisms involved in cell death induction remain unclear. In this study, we set out to evaluate PDT's cytotoxicity using methylene blue (MB) as a photosensitizer (PS) (MB-PDT) and to evaluate the contribution of necroptosis in its effect in human PDAC cells. Our results demonstrated that MB-PDT induced significant death of different human PDAC models presenting two different susceptibility profiles. This effect was independent of MB uptake or its subcellular localization. We found that the ability of triggering necroptosis was determinant to increase the treatment efficiency. Analysis of single cell RNA-seq data from normal and neoplastic human pancreatic tissues showed that specific necroptosis proteins RIPK1, RIPK3 and MLKL presented significant higher expression levels in cells displaying a transformed phenotype providing further support to the use of approaches that activate necroptosis, like MB-PDT, as useful adjunct to surgery of PDAC to tackle the problem of microscopic residual disease as well as to minimize the chance of local and metastatic recurrence.


Assuntos
Adenocarcinoma , Fotoquimioterapia , Humanos , Azul de Metileno/farmacologia , Necroptose , Fármacos Fotossensibilizantes/farmacologia , Fotoquimioterapia/métodos , Apoptose , Neoplasias Pancreáticas
2.
Cells ; 10(9)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34571827

RESUMO

During type 1 diabetes mellitus (T1DM) development, beta-cells undergo intense endoplasmic reticulum (ER) stress that could result in apoptosis through the failure of adaptation to the unfolded protein response (UPR). Islet transplantation is considered an attractive alternative among beta-cell replacement therapies for T1DM. To avoid the loss of beta-cells that will jeopardize the transplant's outcome, several strategies are being studied. We have previously shown that prolactin induces protection against proinflammatory cytokines and redox imbalance-induced beta-cell death by increasing heat-shock protein B1 (HSPB1) levels. Since the role of HSPB1 in beta cells has not been deeply studied, we investigated the mechanisms involved in unbalanced protein homeostasis caused by intense ER stress and overload of the proteasomal protein degradation pathway. We tested whether HSPB1-mediated cytoprotective effects involved UPR modulation and improvement of protein degradation via the ubiquitin-proteasome system. We demonstrated that increased levels of HSPB1 attenuated levels of pro-apoptotic proteins such as CHOP and BIM, as well as increased protein ubiquitination and the speed of proteasomal protein degradation. Our data showed that HSPB1 induced resistance to proteotoxic stress and, thus, enhanced cell survival via an increase in beta-cell proteolytic capacity. These results could contribute to generate strategies aimed at the optimization of beta-cell replacement therapies.


Assuntos
Proteínas de Choque Térmico/metabolismo , Células Secretoras de Insulina/metabolismo , Chaperonas Moleculares/metabolismo , Animais , Apoptose/fisiologia , Morte Celular/fisiologia , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Oxirredução , Complexo de Endopeptidases do Proteassoma/metabolismo , Transporte Proteico/fisiologia , Proteólise , Resposta a Proteínas não Dobradas/fisiologia
3.
Cell Death Dis ; 11(12): 1070, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33318476

RESUMO

Lack of effective treatments for aggressive breast cancer is still a major global health problem. We have previously reported that photodynamic therapy using methylene blue as photosensitizer (MB-PDT) massively kills metastatic human breast cancer, marginally affecting healthy cells. In this study, we aimed to unveil the molecular mechanisms behind MB-PDT effectiveness and specificity towards tumor cells. Through lipidomics and biochemical approaches, we demonstrated that MB-PDT efficiency and specificity rely on polyunsaturated fatty acid-enriched membranes and on the better capacity to deal with photo-oxidative damage displayed by non-tumorigenic cells. We found out that, in tumorigenic cells, lysosome membrane permeabilization is accompanied by ferroptosis and/or necroptosis. Our results also pointed at a cross-talk between lysosome-dependent cell death (LDCD) and necroptosis induction after photo-oxidation, and contributed to broaden the understanding of MB-PDT-induced mechanisms and specificity in breast cancer cells. Therefore, we demonstrated that efficient approaches could be designed on the basis of lipid composition and metabolic features for hard-to-treat cancers. The results further reinforce MB-PDT as a therapeutic strategy for highly aggressive human breast cancer cells.


Assuntos
Neoplasias da Mama/patologia , Luz , Antioxidantes/farmacologia , Neoplasias da Mama/tratamento farmacológico , Carcinogênese/efeitos dos fármacos , Carcinogênese/patologia , Carcinogênese/efeitos da radiação , Morte Celular/efeitos dos fármacos , Morte Celular/efeitos da radiação , Linhagem Celular Tumoral , Feminino , Ferroptose/efeitos dos fármacos , Ferroptose/efeitos da radiação , Humanos , Lipídeos/química , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Lisossomos/efeitos da radiação , Azul de Metileno/farmacologia , Azul de Metileno/uso terapêutico , Modelos Biológicos , Necroptose/efeitos dos fármacos , Necroptose/efeitos da radiação , Oxirredução , Fotoquimioterapia , Neoplasias de Mama Triplo Negativas/patologia
4.
Photochem Photobiol ; 96(3): 658-667, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31742700

RESUMO

Photodynamic therapy (PDT) appears as a promising alternative in the treatment of breast cancer since it can be highly effective in curing cancer while preserving normal tissue. However, predicting outcomes in PDT still constitutes a great challenge. One of the parameters that are usually empirically determined is the rate of photon flux delivered to the tissue (light fluence rate). In the present study, we intended to understand why monolayers of human cells derived from mammary adenocarcinomas (MDA-MB-231 and MCF-7) respond quite differently to fluence rates (cells were irradiated either for 6 or for 16 min) at a fixed light dose (4.5 J cm-2 ) delivered with an array of LEDs in a typical methylene blue PDT protocol. While death rates of MDA-MB-231 cells were insensitive to the fluence rate, MCF-7 cells showed a quite impressive (three times) decrease in cell death levels in the shorter irradiation protocol. Independent on cell type cell death was invariably correlated with the depletion of reduced glutathione intracellular levels and consequently with widespread redox misbalance. Our data show the potential to optimize fluence rates to provide exhaustion of the cell antioxidant responses in order to circumvent therapy resistance of breast tumors.


Assuntos
Neoplasias da Mama/patologia , Glutationa/metabolismo , Azul de Metileno/farmacologia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Estresse Oxidativo
5.
Mol Cell Endocrinol ; 477: 39-47, 2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29792912

RESUMO

The success of islet transplantation has improved lately. Unfortunately, it is still compromised by cell loss. We have shown that prolactin (PRL) inhibits beta-cell apoptosis and up-regulates the antiapoptotic Heat Shock Protein B1 (HSPB1) in human islets. Since its function in pancreatic islets has not been studied, we explored the role of HSPB1 in PRL-induced beta-cell survival. The significant PRL-induced cytoprotection in control cells was abrogated in HSPB1 silenced cells, overexpression of HSPB1 recovered survival. PRL-mediated inhibition of cytokine-induced caspase activities and cytokine-induced decrease of BCL-2/BAX ratio was significantly reverted in knocked-down cells. Kinetics of HSPB1 and HSF1 expression were studied in primary cultures of murine and human pancreatic islets. These findings are highly relevant for the improvement of clinical islet transplantation success rate since our results demonstrated a key role for HSPB1 pointing it as a promising target for beta-cell cytoprotection through the up-regulation of an endogenous protective pathway.


Assuntos
Citoproteção , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico/metabolismo , Ilhotas Pancreáticas/metabolismo , Proteínas de Neoplasias/metabolismo , Prolactina/farmacologia , Substâncias Protetoras/farmacologia , Adulto , Animais , Apoptose/efeitos dos fármacos , Citocinas/metabolismo , Citoproteção/efeitos dos fármacos , Células HEK293 , Humanos , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/efeitos dos fármacos , Masculino , Camundongos Endogâmicos BALB C , Chaperonas Moleculares
6.
BMC Cancer ; 17(1): 194, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28298203

RESUMO

BACKGROUND: Breast cancer is the main cause of mortality among women. The disease presents high recurrence mainly due to incomplete efficacy of primary treatment in killing all cancer cells. Photodynamic therapy (PDT), an approach that causes tissue destruction by visible light in the presence of a photosensitizer (Ps) and oxygen, appears as a promising alternative therapy that could be used adjunct to chemotherapy and surgery for curing cancer. However, the efficacy of PDT to treat breast tumours as well as the molecular mechanisms that lead to cell death remain unclear. METHODS: In this study, we assessed the cell-killing potential of PDT using methylene blue (MB-PDT) in three breast epithelial cell lines that represent non-malignant conditions and different molecular subtypes of breast tumours. Cells were incubated in the absence or presence of MB and irradiated or not at 640 nm with 4.5 J/cm2. We used a combination of imaging and biochemistry approaches to assess the involvement of classical autophagic and apoptotic pathways in mediating the cell-deletion induced by MB-PDT. The role of these pathways was investigated using specific inhibitors, activators and gene silencing. RESULTS: We observed that MB-PDT differentially induces massive cell death of tumour cells. Non-malignant cells were significantly more resistant to the therapy compared to malignant cells. Morphological and biochemical analysis of dying cells pointed to alternative mechanisms rather than classical apoptosis. MB-PDT-induced autophagy modulated cell viability depending on the cell model used. However, impairment of one of these pathways did not prevent the fatal destination of MB-PDT treated cells. Additionally, when using a physiological 3D culture model that recapitulates relevant features of normal and tumorous breast tissue morphology, we found that MB-PDT differential action in killing tumour cells was even higher than what was detected in 2D cultures. CONCLUSIONS: Finally, our observations underscore the potential of MB-PDT as a highly efficient strategy which could use as a powerful adjunct therapy to surgery of breast tumours, and possibly other types of tumours, to safely increase the eradication rate of microscopic residual disease and thus minimizing the chance of both local and metastatic recurrence.


Assuntos
Neoplasias da Mama/metabolismo , Caspases/metabolismo , Azul de Metileno/administração & dosagem , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/administração & dosagem , Apoptose , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Azul de Metileno/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Transdução de Sinais
8.
Mol Cell Endocrinol ; 381(1-2): 16-25, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-23891624

RESUMO

In view of the great demand for human beta-cells for physiological and medical studies, we generated cell lines derived from human insulinomas which secrete insulin, C-peptide and express neuroendocrine and islet markers. In this study, we set out to characterize their proteomes, comparing them to those of primary beta-cells using DIGE followed by MS. The results were validated by Western blotting. An average of 1800 spots was detected with less than 1% exhibiting differential abundance. Proteins more abundant in human islets, such as Caldesmon, are involved in the regulation of cell contractility, adhesion dependent signaling, and cytoskeletal organization. In contrast, almost all proteins more abundant in insulinoma cells, such as MAGE2, were first described here and could be related to cell survival and resistance to chemotherapy. Our proteomic data provides, for the first time, a molecular snapshot of the orchestrated changes in expression of proteins involved in key processes which could be correlated with the altered phenotype of human beta-cells. Collectively our observations prompt research towards the establishment of bioengineered human beta-cells providing a new and needed source of cultured human beta-cells for beta-cell research, along with the development of new therapeutic strategies for detection, characterization and treatment of insulinomas.


Assuntos
Células Secretoras de Insulina/metabolismo , Insulinoma/metabolismo , Proteoma/metabolismo , Adulto , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Humanos , Insulinoma/genética , Antígenos Específicos de Melanoma/metabolismo , Pessoa de Meia-Idade , Cultura Primária de Células , Proteoma/genética , Técnicas de Cultura de Tecidos , Células Tumorais Cultivadas , Eletroforese em Gel Diferencial Bidimensional
9.
BMC Cancer ; 12: 26, 2012 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-22260435

RESUMO

BACKGROUND: Metastasis is the main factor responsible for death in breast cancer patients. Matrix metalloproteinases (MMPs) and their inhibitors, known as tissue inhibitors of MMPs (TIMPs), and the membrane-associated MMP inhibitor (RECK), are essential for the metastatic process. We have previously shown a positive correlation between MMPs and their inhibitors expression during breast cancer progression; however, the molecular mechanisms underlying this coordinate regulation remain unknown. In this report, we investigated whether TGF-ß1 could be a common regulator for MMPs, TIMPs and RECK in human breast cancer cell models. METHODS: The mRNA expression levels of TGF-ß isoforms and their receptors were analyzed by qRT-PCR in a panel of five human breast cancer cell lines displaying different degrees of invasiveness and metastatic potential. The highly invasive MDA-MB-231 cell line was treated with different concentrations of recombinant TGF-ß1 and also with pharmacological inhibitors of p38 MAPK and ERK1/2. The migratory and invasive potential of these treated cells were examined in vitro by transwell assays. RESULTS: In general, TGF-ß2, TßRI and TßRII are over-expressed in more aggressive cells, except for TßRI, which was also highly expressed in ZR-75-1 cells. In addition, TGF-ß1-treated MDA-MB-231 cells presented significantly increased mRNA expression of MMP-2, MMP-9, MMP-14, TIMP-2 and RECK. TGF-ß1 also increased TIMP-2, MMP-2 and MMP-9 protein levels but downregulated RECK expression. Furthermore, we analyzed the involvement of p38 MAPK and ERK1/2, representing two well established Smad-independent pathways, in the proposed mechanism. Inhibition of p38MAPK blocked TGF-ß1-increased mRNA expression of all MMPs and MMP inhibitors analyzed, and prevented TGF-ß1 upregulation of TIMP-2 and MMP-2 proteins. Moreover, ERK1/2 inhibition increased RECK and prevented the TGF-ß1 induction of pro-MMP-9 and TIMP-2 proteins. TGF-ß1-enhanced migration and invasion capacities were blocked by p38MAPK, ERK1/2 and MMP inhibitors. CONCLUSION: Altogether, our results support that TGF-ß1 modulates the mRNA and protein levels of MMPs (MMP-2 and MMP-9) as much as their inhibitors (TIMP-2 and RECK). Therefore, this cytokine plays a crucial role in breast cancer progression by modulating key elements of ECM homeostasis control. Thus, although the complexity of this signaling network, TGF-ß1 still remains a promising target for breast cancer treatment.


Assuntos
Neoplasias da Mama/metabolismo , Inibidores de Metaloproteinases de Matriz , Metaloproteinases da Matriz/metabolismo , Proteínas de Neoplasias/metabolismo , Inibidores Teciduais de Metaloproteinases/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Western Blotting , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Homeostase/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Reação em Cadeia da Polimerase/métodos , RNA Mensageiro/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA