Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 13: 594, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31244599

RESUMO

Recent advances in image acquisition and processing techniques, along with the success of novel deep learning architectures, have given the opportunity to develop innovative algorithms capable to provide a better characterization of neurological related diseases. In this work, we introduce a neural network based approach to classify Multiple Sclerosis (MS) patients into four clinical profiles. Starting from their structural connectivity information, obtained by diffusion tensor imaging and represented as a graph, we evaluate the classification performances using unweighted and weighted connectivity matrices. Furthermore, we investigate the role of graph-based features for a better characterization and classification of the pathology. Ninety MS patients (12 clinically isolated syndrome, 30 relapsing-remitting, 28 secondary-progressive, and 20 primary-progressive) along with 24 healthy controls, were considered in this study. This work shows the great performances achieved by neural networks methods in the classification of the clinical profiles. Furthermore, it shows local graph metrics do not improve the classification results suggesting that the latent features created by the neural network in its layers have a much important informative content. Finally, we observe that graph weights representation of brain connections preserve important information to discriminate between clinical forms.

2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 2087-2090, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31946312

RESUMO

Prediction of disability progression in multiple sclerosis patients is a critical component of their management. In particular, one challenge is to identify and characterize a patient profile who may benefit of efficient treatments. However, it is not yet clear whether a particular relation exists between the brain structure and the disability status.This work aims at producing a fully automatic model for the expanded disability status score estimation, given the brain structural connectivity representation of a multiple sclerosis patient. The task is addressed by first extracting the connectivity graph, obtained by combining brain grey matter parcellation and tractography extracted from Diffusion and T1-weighted Magnetic Resonance (MR) images, and then processing it via a convolutional neural network (CNN) in order to compute the predicted score. Experiments show that the herein proposed approach achieves promising results, thus resulting as an important step forward on the road to better predict the evolution of the disease.


Assuntos
Avaliação da Deficiência , Esclerose Múltipla/fisiopatologia , Redes Neurais de Computação , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Esclerose Múltipla/diagnóstico por imagem
3.
Comput Biol Med ; 77: 64-75, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27522235

RESUMO

In this paper, we propose an automated approach to extracting White Matter (WM) fiber-bundles through clustering and model characterization. The key novelties of our approach are: a new string-based formalism, allowing an alternative representation of WM fibers, a new string dissimilarity metric, a WM fiber clustering technique, and a new model-based characterization algorithm. Thanks to these novelties, the complex problem of WM fiber-bundle extraction and characterization reduces to a much simpler and well-known string extraction and analysis problem. Interestingly, while several past approaches extract fiber-bundles by grouping available fibers on the basis of provided atlases (and, therefore, cannot capture possibly existing fiber-bundles nor represented in the atlases), our approach first clusters available fibers once and for all, and then tries to associate obtained clusters with models provided directly and dynamically by users. This more dynamic and interactive way of proceeding can help the detection of fiber-bundles autonomously proposed by our approach and not present in the initial models provided by experts.


Assuntos
Imagem de Tensor de Difusão/métodos , Processamento de Imagem Assistida por Computador/métodos , Fibras Nervosas/fisiologia , Substância Branca/diagnóstico por imagem , Algoritmos , Análise por Conglomerados , Humanos , Imagens de Fantasmas
4.
J Bioinform Comput Biol ; 2(3): 471-95, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15359422

RESUMO

Predicting the three-dimensional structure of proteins is a difficult task. In the last few years several approaches have been proposed for performing this task taking into account different protein chemical and physical properties. As a result, a growing number of protein structure prediction tools is becoming available, some of them specialized to work on either some aspects of the predictions or on some categories of proteins; however, they are still not sufficiently accurate and reliable for predicting all kinds of proteins. In this context, it is useful to jointly apply different prediction tools and combine their results in order to improve the quality of the predictions. However, several problems have to be solved in order to make this a viable possibility. In this paper a framework and a tool is proposed which allows: (i) definition of a common reference applicative domain for different prediction tools; (ii) characterization of prediction tools through evaluating some quality parameters; (iii) characterization of the performances of a team of predictors jointly applied over a prediction problem; (iv) the singling out of the best team for a prediction problem; and (v) the integration of predictor results in the team in order to obtain a unique prediction. A system implementing the various steps of the proposed framework (CooPPS) has been developed and several experiments for testing the effectiveness of the proposed approach have been carried out.


Assuntos
Algoritmos , Modelos Moleculares , Proteínas/química , Alinhamento de Sequência/métodos , Análise de Sequência de Proteína/métodos , Software , Interface Usuário-Computador , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas/análise , Relação Estrutura-Atividade , Integração de Sistemas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...