Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Stroke Res ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980519

RESUMO

Cerebral cavernous malformation (CCM) is a hemorrhagic cerebrovascular disease where lesions develop in the setting of endothelial mutations of CCM genes, with many cases also harboring somatic PIK3CA gain of function (GOF) mutations. Rapamycin, an mTORC1 inhibitor, inhibited progression of murine CCM lesions driven by Ccm gene loss and Pik3ca GOF, but it remains unknown if rapamycin is beneficial in the absence of induction of Pik3ca GOF. We investigated the effect of rapamycin at three clinically relevant doses on lesion development in the Ccm3-/-PDGFb-icreERPositive murine model of familial CCM disease, without induction of Pik3ca GOF. Lesion burden, attrition, and acute and chronic hemorrhaging were compared between placebo and rapamycin-treated mice. Plasma miRNome was compared to identify potential biomarkers of rapamycin response. Outlier, exceptionally large CCM lesions (> 2 SD above the mean lesion burden) were exclusively observed in the placebo group. Rapamycin, across all dosages, may have prevented the emergence of large outlier lesions. Yet rapamycin also appeared to exacerbate mean lesion burden of surviving mice when outliers were excluded, increased attrition, and did not alter hemorrhage. miR-30c-2-3p, decreased in rapamycin-treated mouse plasma, has gene targets in PI3K/AKT and mTOR signaling. Progression of outlier lesions in a familial CCM model may have been halted by rapamycin treatment, at the potential expense of increased mean lesion burden and increased attrition. If confirmed, this can have implications for potential rapamycin treatment of familial CCM disease, where lesion development may not be driven by PIK3CA GOF. Further studies are necessary to determine specific pathways that mediate potential beneficial and detrimental effects of rapamycin treatment, and whether somatic PIK3CA mutations drive particularly aggressive lesions.

2.
Ecol Evol ; 13(11): e10730, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38034342

RESUMO

Globally, insects have been impacted by climate change, with bumble bees in particular showing range shifts and declining species diversity with global warming. This suggests heat tolerance is a likely factor limiting the distribution and success of these bees. Studies have shown high intraspecific variance in bumble bee thermal tolerance, suggesting biological and environmental factors may be impacting heat resilience. Understanding these factors is important for assessing vulnerability and finding environmental solutions to mitigate effects of climate change. In this study, we assess whether geographic range variation in bumble bees in the eastern United States is associated with heat tolerance and further dissect which other biological and environmental factors explain variation in heat sensitivity in these bees. We examine heat tolerance by caste, sex, and rearing condition (wild/lab) across six eastern US bumble bee species, and assess the role of age, reproductive status, body size, and interactive effects of humidity and temperature on thermal tolerance in Bombus impatiens. We found marked differences in heat tolerance by species that correlate with each species' latitudinal range, habitat, and climatic niche, and we found significant variation in thermal sensitivity by caste and sex. Queens had considerably lower heat tolerance than workers and males, with greater tolerance when queens would first be leaving their natal nest, and lower tolerance after ovary activation. Wild bees tended to have higher heat tolerance than lab reared bees, and body size was associated with heat tolerance only in wild-caught foragers. Humidity showed a strong interaction with heat effects, pointing to the need to regulate relative humidity in thermal assays and consider its role in nature. Altogether, we found most tested biological conditions impact thermal tolerance and highlight the stages of these bees that will be most sensitive to future climate change.

3.
Genome Biol Evol ; 13(6)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-33881508

RESUMO

A major goal of evolutionary genetics and evo-devo is to understand how changes in genotype manifest as changes in phenotype. Bumble bees display remarkable color pattern diversity while converging onto numerous regional Müllerian mimicry patterns, thus enabling exploration of the genetic mechanisms underlying convergent phenotypic evolution. In western North America, multiple bumble bee species converge onto local mimicry patterns through parallel shifts of midabdominal segments from red to black. It was previously demonstrated that a Hox gene, Abd-B, is the key regulator of the phenotypic switch in one of these species, Bombus melanopygus, however, the mechanism by which Abd-B regulates color differentiation remains unclear. Using tissue/stage-specific transcriptomic analysis followed by qRT-PCR validation, this study reveals a suite of genes potentially involved downstream of Abd-B during color pattern differentiation. The data support differential genes expression of not only the first switch gene Abd-B, but also an intermediate developmental gene nubbin, and a whole suite of downstream melanin and redox genes that together reinforce the observed eumelanin (black)-pheomelanin (red) ratios. These include potential genes involved in the production of insect pheomelanins, a pigment until recently not thought to occur in insects and thus lacking known regulatory enzymes. The results enhance understanding of pigmentation gene networks involved in bumble bee color pattern development and diversification, while providing insights into how upstream regulators such as Hox genes interact with downstream morphogenic players to facilitate this adaptive phenotypic radiation.


Assuntos
Abelhas/genética , Mimetismo Biológico/genética , Pigmentação/genética , Animais , Abelhas/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Masculino , Melaninas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...