Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Jpn J Infect Dis ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38825455

RESUMO

Biofilm-producing methicillin-resistant Staphylococcus aureus (MRSA) and coagulase-negative Staphylococci (MR-CoNS) are a clinical challenge for the treatment of healthcare-associated infections. As alternative antimicrobial options are needed, we aimed to determine the effect of curcumin-chitosan magnetic nanoparticles on the biofilm of staphylococcal clinical isolates. MRSA and CoNS clinical isolates were identified by MALDI-TOF mass spectrometry. Antimicrobial susceptibility testing was performed by broth microdilution. Nanoparticles were synthesized by co-precipitation of magnetic nanoparticles (MNP) and encapsulation by ionotropic gelation of curcumin (Cur) and chitosan (Chi). Biofilm inhibition and eradication by nanoparticles with and without the addition of oxacillin was assessed on staphylococcal strains. Cur-Chi-MNP showed antimicrobial activity on planktonic cells of MRSA and MR-CoNS strains and inhibited biofilm of MRSA. The addition of OXA to Cur-Chi-MNP increased biofilm inhibition and eradication activity against all Staphylococci strains (p=0.0007); higher biofilm activity was observed in early biofilm stages. Cur-Chi-MNP showed antimicrobial and biofilm inhibition activity against S. aureus. The addition of OXA increased biofilm inhibition and eradication activity against all Staphylococci strains. A combination treatment of Cur-Chi-MNP and OXA could be potentially used to treat staphylococcal biofilm-associated infections in its early stages before the establishment of biofilm bacterial cells.

2.
Int J Mol Sci ; 24(21)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37958672

RESUMO

Cancer is a worldwide health problem. Nevertheless, new technologies in the immunotherapy field have emerged. Chimeric antigen receptor (CAR) technology is a novel biological form to treat cancer; CAR-T cell genetic engineering has positively revolutionized cancer immunotherapy. In this paper, we review the latest developments in CAR-T in cancer treatment. We present the structure of the different generations and variants of CAR-T cells including TRUCK (T cells redirected for universal cytokine killing. We explain the approaches of the CAR-T cells manufactured ex vivo and in vivo. Moreover, we describe the limitations and areas of opportunity for this immunotherapy and the current challenges of treating hematological and solid cancer using CAR-T technology as well as its constraints and engineering approaches. We summarize other immune cells that have been using CAR technology, such as natural killer (NK), macrophages (M), and dendritic cells (DC). We conclude that CAR-T cells have the potential to treat not only cancer but other chronic diseases.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Imunoterapia Adotiva , Linfócitos T , Neoplasias/genética , Terapia Baseada em Transplante de Células e Tecidos
3.
Polymers (Basel) ; 15(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37688239

RESUMO

Steady growth in beer production is increasing the number of by-products named brewers' spent grain. Such by-products are a source of several components, where cellulose is usually present in high amounts. The aim of this study was to develop a protocol to obtain a mix of cellulose microfibers with an average diameter of 8-12 µm and cellulose nanoplatelets with an average thickness of 100 nm, which has several applications in the food industry. The process comprised one alkaline treatment followed by acid hydrolysis, giving a new mix of micro and nanocellulose. This mix was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and laser scanning microscopy corroborating the presence and measurements of the cellulose nanostructure, showing an aspect ratio of up to 500. Finally, we demonstrated that the administration of this new type of nanocellulose allowed us to control the weight of mice (feed intake), showing a significant percentage of weight reduction (4.96%) after 15 days compared with their initial weight, indicating the possibility of using this material as a dietary fiber.

4.
Pharmaceutics ; 15(9)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37765201

RESUMO

Cancer is a disease that causes millions of deaths per year worldwide because conventional treatments have disadvantages such as unspecific tumor selectivity and unwanted toxicity. Most human solid tumors present hypoxic microenvironments and this promotes multidrug resistance. In this study, we present "Magnetogene nanoparticle vector" which takes advantage of the hypoxic microenvironment of solid tumors to increase selective gene expression in tumor cells and reduce unwanted toxicity in healthy cells; this vector was guided by a magnet to the tumor tissue. Magnetic nanoparticles (MNPs), chitosan (CS), and the pHRE-Luc plasmid with a hypoxia-inducible promoter were used to synthesize the vector called "Magnetogene nanoparticles" by ionic gelation. The hypoxic functionality of Magnetogene vector nanoparticles was confirmed in the B16F10 cell line by measuring the expression of the luciferase reporter gene under hypoxic and normoxic conditions. Also, the efficiency of the Magnetogene vector was confirmed in vivo. Magnetogene was administered by intravenous injection (IV) in the tail vein and directed through an external magnetic field at the site of tumor growth in C57Bl/6 mice. A Magnetogene vector with a size of 50 to 70 nm was directed and retained at the tumor area and gene expression was higher at the tumor site than in the others tissues, confirming the selectivity of this vector towards hypoxic tumor areas. This nanosystem, that we called the "Magnetogene vector" for systemic delivery and specific gene expression in hypoxic tumors controlled by an external magnetic designed to target hypoxic regions of tumors, can be used for cancer-specific gene therapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...