Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genet ; 16: 44, 2015 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-25925961

RESUMO

BACKGROUND: Using metaphase spreads from human lymphoblastoid cell lines, we previously showed how immunofluorescence microscopy could define the distribution of histone modifications across metaphase chromosomes. We showed that different histone modifications gave consistent and clearly defined immunofluorescent banding patterns. However, it was not clear to what extent these higher level distributions were influenced by long-term growth in culture, or by the specific functional associations of individual histone modifications. RESULTS: Metaphase chromosome spreads from human lymphocytes stimulated to grow in short-term culture, were immunostained with antibodies to histone H3 mono- or tri-methylated at lysine 4 (H3K4me1, H3K4me3). Chromosomes were identified on the basis of morphology and reverse DAPI (rDAPI) banding. Both antisera gave the same distinctive immunofluorescent staining pattern, with unstained heterochromatic regions and a banded distribution along the chromosome arms. Karyotypes were prepared, showing the reproducibility of banding between sister chromatids, homologue pairs and from one metaphase spread to another. At the light microscope level, we detect no difference between the banding patterns along chromosomes from primary lymphocytes and lymphoblastoid cell lines adapted to long-term growth in culture. CONCLUSIONS: The distribution of H3K4me3 is the same across metaphase chromosomes from human primary lymphocytes and LCL, showing that higher level distribution is not altered by immortalization or long-term culture. The two modifications H3K4me1 (enriched in gene enhancer regions) and H3K4me3 (enriched in gene promoter regions) show the same distributions across human metaphase chromosomes, showing that functional differences do not necessarily cause modifications to differ in their higher-level distributions.


Assuntos
Cromossomos Humanos , Histonas/genética , Histonas/metabolismo , Linfócitos/metabolismo , Metáfase , Linhagem Celular , Bandeamento Cromossômico , Humanos , Lisina , Metilação , Isoformas de Proteínas
2.
Genome Biol ; 11(11): R110, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21078160

RESUMO

BACKGROUND: Immunolabeling of metaphase chromosome spreads can map components of the human epigenome at the single cell level. Previously, there has been no systematic attempt to explore the potential of this approach for epigenomic mapping and thereby to complement approaches based on chromatin immunoprecipitation (ChIP) and sequencing technologies. RESULTS: By immunostaining and immunofluorescence microscopy, we have defined the distribution of selected histone modifications across metaphase chromosomes from normal human lymphoblastoid cells and constructed immunostained karyotypes. Histone modifications H3K9ac, H3K27ac and H3K4me3 are all located in the same set of sharply defined immunofluorescent bands, corresponding to 10- to 50-Mb genomic segments. Primary fibroblasts gave broadly the same banding pattern. Bands co-localize with regions relatively rich in genes and CpG islands. Staining intensity usually correlates with gene/CpG island content, but occasional exceptions suggest that other factors, such as transcription or SINE density, also contribute. H3K27me3, a mark associated with gene silencing, defines a set of bands that only occasionally overlap with gene-rich regions. Comparison of metaphase bands with histone modification levels across the interphase genome (ENCODE, ChIP-seq) shows a close correspondence for H3K4me3 and H3K27ac, but major differences for H3K27me3. CONCLUSIONS: At metaphase the human genome is packaged as chromatin in which combinations of histone modifications distinguish distinct regions along the euchromatic chromosome arms. These regions reflect the high-level interphase distributions of some histone modifications, and may be involved in heritability of epigenetic states, but we also find evidence for extensive remodeling of the epigenome at mitosis.


Assuntos
Imunoprecipitação da Cromatina/métodos , Epigenômica , Genoma Humano , Histonas/química , Metáfase/genética , Linhagem Celular , Cromatina/química , Ilhas de CpG , Epigênese Genética , Feminino , Inativação Gênica , Humanos , Cariotipagem , Masculino , Análise em Microsséries , Mitose , Processamento de Proteína Pós-Traducional
3.
Exp Cell Res ; 316(13): 2123-35, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20452346

RESUMO

Histone acetylation is a key modification that regulates chromatin accessibility. Here we show that treatment with butyrate or other histone deacetylase (HDAC) inhibitors does not induce histone hyperacetylation in metaphase-arrested HeLa cells. When compared to similarly treated interphase cells, acetylation levels are significantly decreased in all four core histones and at all individual sites examined. However, the extent of the decrease varies, ranging from only slight reduction at H3K23 and H4K12 to no acetylation at H3K27 and barely detectable acetylation at H4K16. Our results show that the bulk effect is not due to increased or butyrate-insensitive HDAC activity, though these factors may play a role with some individual sites. We conclude that the lack of histone acetylation during mitosis is primarily due to changes in histone acetyltransferases (HATs) or changes in chromatin. The effects of protein phosphatase inhibitors on histone acetylation in cell lysates suggest that the reduced ability of histones to become acetylated in mitotic cells depends on protein phosphorylation.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Histonas/metabolismo , Mitose/efeitos dos fármacos , Acetilação , Butiratos/farmacologia , Cromatina/fisiologia , Células HeLa/efeitos dos fármacos , Células HeLa/metabolismo , Histona Acetiltransferases/metabolismo , Histona Desacetilases/metabolismo , Humanos , Fosforilação/efeitos dos fármacos , Processamento de Proteína Pós-Traducional , Transdução de Sinais
4.
Am J Med Genet B Neuropsychiatr Genet ; 132B(1): 5-8, 2005 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-15690550

RESUMO

Consistent deficits in the cholinergic system are evident in the brains of Alzheimer's Disease (AD) patients, including reductions in the activities of acetylcholine, acetylcholinesterase (AChE), and choline acetyltransferase (ChAT), increased butyrylcholinesterase (BChE) activity, and a selective loss of nicotinic acetylcholine receptors (nAChRs). Accordingly, we have analyzed polymorphisms in the genes encoding AChE, ChAT, BChE, and several of the subunit genes from neuronal nAChRs, for genetic associations with late-onset AD. A significant association for disease was detected for a non-coding polymorphism in ChAT (allele chi(1) (2) = 12.84, P = 0.0003; genotype chi(2) (2) = 11.89, P = 0.0026). Although replication analysis did not confirm the significance of this finding when the replication samples were considered alone (allele chi(1) (2) = 1.02, P = 0.32; genotype chi(2) (2) = 1.101, P = 0.58) the trends were in the correct direction and a significant association remained when the two sample sets were pooled (allele chi(1) (2) = 12.37, P = 0.0004; genotype chi(2) (2) = 11.61, P = 0.003). Previous studies have reported significant disease associations for both the K-variant of BChE and the coding ChAT rs3810950 polymorphism with AD. Replication analyses of these two loci failed to detect any significant association for disease in our case-control samples.


Assuntos
Doença de Alzheimer/genética , Colina O-Acetiltransferase/genética , Idoso , Alelos , Doença de Alzheimer/enzimologia , Estudos de Casos e Controles , Distribuição de Qui-Quadrado , Feminino , Frequência do Gene , Predisposição Genética para Doença/genética , Genótipo , Humanos , Masculino , Razão de Chances , Polimorfismo Genético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...