Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 22(6): 100562, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37142056

RESUMO

Modern mass spectrometers routinely allow deep proteome coverage in a single experiment. These methods are typically operated at nanoflow and microflow regimes, but they often lack throughput and chromatographic robustness, which is critical for large-scale studies. In this context, we have developed, optimized, and benchmarked LC-MS methods combining the robustness and throughput of analytical flow chromatography with the added sensitivity provided by the Zeno trap across a wide range of cynomolgus monkey and human matrices of interest for toxicological studies and clinical biomarker discovery. Sequential Window Acquisition of All Theoretical Fragment Ion Mass Spectra (SWATH) data-independent acquisition (DIA) experiments with Zeno trap activated (Zeno SWATH DIA) provided a clear advantage over conventional SWATH DIA in all sample types tested with improved sensitivity, quantitative robustness, and signal linearity as well as increased protein coverage by up to 9-fold. Using a 10-min gradient chromatography, up to 3300 proteins were identified in tissues at 2 µg peptide load. Importantly, the performance gains with Zeno SWATH translated into better biological pathway representation and improved the ability to identify dysregulated proteins and pathways associated with two metabolic diseases in human plasma. Finally, we demonstrate that this method is highly stable over time with the acquisition of reliable data over the injection of 1000+ samples (14.2 days of uninterrupted acquisition) without the need for human intervention or normalization. Altogether, Zeno SWATH DIA methodology allows fast, sensitive, and robust proteomic workflows using analytical flow and is amenable to large-scale studies.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Animais , Humanos , Espectrometria de Massas em Tandem/métodos , Macaca fascicularis , Proteômica/métodos , Software , Cromatografia Líquida/métodos , Proteoma
2.
Life Sci ; 271: 119195, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33581125

RESUMO

AIMS: Ulcerative colitis and Crohn's disease, collectively known as inflammatory bowel disease (IBD), are chronic inflammatory disorders of the intestine for which key elements in disease initiation and perpetuation are defects in epithelial barrier integrity. Achieving mucosal healing is essential to ameliorate disease outcome and so new therapies leading to epithelial homeostasis and repair are under investigation. This study was designed to determine the mechanisms by which IL-22 regulates intestinal epithelial cell function. MAIN METHODS: Human intestinal organoids and resections, as well as mice were used to evaluate the effect of IL-22 on stem cell expansion, proliferation and expression of mucus components. IL-22 effect on barrier function was assessed in polarized T-84 cell monolayers. Butyrate co-treatments and organoid co-cultures with immune cells were performed to monitor the impact of microbial-derived metabolites and inflammatory environments on IL-22 responses. KEY FINDINGS: IL-22 led to epithelial stem cell expansion, proliferation, barrier dysfunction and anti-microbial peptide production in human and mouse models evaluated. IL-22 also altered the mucus layer by inducing an increase in membrane mucus but a decrease in secreted mucus and goblet cell content. IL-22 had the same effect on anti-microbial peptides and membrane mucus in both healthy and IBD human samples. In contrast, this IL-22-associated epithelial phenotype was different when treatments were performed in presence of butyrate and organoids co-cultured with immune cells. SIGNIFICANCE: Our data indicate that IL-22 promotes epithelial regeneration, innate defense and membrane mucus production, strongly supporting the potential clinical utility of IL-22 as a mucosal healing therapy in IBD.


Assuntos
Células Epiteliais/fisiologia , Homeostase/fisiologia , Interleucinas/fisiologia , Interleucinas/uso terapêutico , Mucosa Intestinal/fisiologia , Animais , Linhagem Celular , Técnicas de Cocultura , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Células Epiteliais/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Humanos , Interleucinas/farmacologia , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Organoides/efeitos dos fármacos , Organoides/fisiologia , Interleucina 22
3.
J Transl Autoimmun ; 4: 100079, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33490940

RESUMO

Nuclear factor (erythroid-derived 2) like 2 (NRF2) is a nuclear transcription factor activated in response to oxidative stress that induces a gene program that dampens inflammation and can limit cell damage that perpetuates the inflammatory response. We have identified A-1396076, a potent and selective NRF2 activator with demonstrated KEAP1 binding and modulation of cellular NRF2 mediated effects. In vivo administration of A-1396076 inhibits inflammation across several rodent models of autoimmunity when administered at or before the time of antigen challenge while also inducing NRF2 modulated gene transcription in the liver of the animals. It was not effective when administered after the time of antigen challenge or in a T cell independent model of arthritis induced by passive transfer of anti-collagen antibodies. A-1396076 inhibited antigen dependent T cell activation as measured by IFN-γ production in an ex vivo re-stimulation assay and following anti-CD3 challenge of MOG-sensitized mice. A-1396076 reduced costimulatory molecule expression on dendritic cells in the lungs of OVA LPS challenged mice suggesting that the mechanism of T cell inhibition was mediated at least partially by interfering with antigen presentation. These data suggest that NRF2 activation may be an effective strategy to dampen inflammation for treatment of autoimmune disease.

4.
Front Immunol ; 11: 547102, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33643277

RESUMO

Background & Aims: Diligent side-by-side comparisons of how different methodologies affect growth efficiency and quality of intestinal colonoids have not been performed leaving a gap in our current knowledge. Here, we summarize our efforts to optimize culture conditions for improved growth and functional differentiation of mouse and human colon organoids. Methods: Mouse and human colon organoids were grown in four different media. Media-dependent long-term growth was measured by quantifying surviving organoids via imaging and a cell viability readout over five passages. The impact of diverse media on differentiation was assessed by quantifying the number of epithelial cell types using markers for enterocytes, stem cells, Goblet cells, and enteroendocrine cells by qPCR and histology upon removal of growth factors. Results: In contrast to Wnt3a-conditioned media, media supplemented with recombinant Wnt3a alone did not support long-term survival of human or mouse colon organoids. Mechanistically, this observation can be attributed to the fact that recombinant Wnt3a did not support stem cell survival or proliferation as demonstrated by decreased LGR5 and Ki67 expression. When monitoring expression of markers for epithelial cell types, the highest level of organoid differentiation was observed after combined removal of Wnt3a, Noggin, and R-spondin from Wnta3a-conditioned media cultures. Conclusion: Our study defined Wnt3a-containing conditioned media as optimal for growth and survival of human and mouse organoids. Furthermore, we established that the combined removal of Wnt3a, Noggin, and R-spondin results in optimal differentiation. This study provides a step forward in optimizing conditions for intestinal organoid growth to improve standardization and reproducibility of this model platform.


Assuntos
Técnicas de Cultura de Células , Colo/citologia , Organoides/citologia , Técnicas de Cultura de Tecidos , Animais , Biomarcadores , Proteínas de Transporte/metabolismo , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/metabolismo , Humanos , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Necroptose , Transdução de Sinais , Células-Tronco/metabolismo , Proteína Wnt3/metabolismo
5.
J Immunol ; 198(7): 2578-2588, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28219887

RESUMO

Systemic lupus erythematosus (lupus) is characterized by autoantibody-mediated organ injury. Follicular Th (Tfh) cells orchestrate physiological germinal center (GC) B cell responses, whereas in lupus they promote aberrant GC responses with autoreactive memory B cell development and plasma cell-derived autoantibody production. IL-21, a Tfh cell-derived cytokine, provides instructional cues for GC B cell maturation, with disruption of IL-21 signaling representing a potential therapeutic strategy for autoantibody-driven diseases such as systemic lupus erythematosus. We used blockade of IL-21 to dissect the mechanisms by which this cytokine promotes autoimmunity in murine lupus. Treatment of lupus-prone B6.Sle1.Yaa mice with an anti-IL-21 blocking Ab reduced titers of autoantibodies, delayed progression of glomerulonephritis and diminished renal-infiltrating Tfh and Th1 cells, and improved overall survival. Therapy inhibited excessive accumulation of Tfh cells coexpressing IL-21 and IFN-γ, and suppressed their production of the latter cytokine, albeit while not affecting their frequency. Anti-IL-21 treatment also led to a reduction in GC B cells, CD138hi plasmablasts, IFN-γ-dependent IgG2c production, and autoantibodies, indicating that Tfh cell-derived IL-21 is critical for pathological B cell cues in lupus. Normalization of GC responses was, in part, caused by uncoupling of Tfh-B cell interactions, as evidenced by reduced expression of CD40L on Tfh cells and reduced B cell proliferation in treated mice. Our work provides mechanistic insight into the contribution of IL-21 to the pathogenesis of murine lupus, while revealing the importance of T-B cellular cross-talk in mediating autoimmunity, demonstrating that its interruption impacts both cell types leading to disease amelioration.


Assuntos
Linfócitos B/imunologia , Interleucinas/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Receptor Cross-Talk/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Autoimunidade/imunologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , ELISPOT , Citometria de Fluxo , Masculino , Camundongos , Camundongos Mutantes
6.
Nat Protoc ; 5(10): 1666-77, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20885379

RESUMO

In this paper, we provide a general protocol for labeling proteins with the membrane-permeant fluorogenic biarsenical dye fluorescein arsenical hairpin binder-ethanedithiol (FlAsH-EDT2). Generation of the tetracysteine-tagged protein construct by itself is not described, as this is a protein-specific process. This method allows site-selective labeling of proteins in living cells and has been applied to a wide variety of proteins and biological problems. We provide here a generally applicable labeling procedure and discuss the problems that can occur as well as general considerations that must be taken into account when designing and implementing the procedure. The method can even be applied to proteins with expression below 1 pmol mg⁻¹ of protein, such as G protein-coupled receptors, and it can be used to study the intracellular localization of proteins as well as functional interactions in fluorescence resonance energy transfer experiments. The labeling procedure using FlAsH-EDT2 as described takes 2-3 h, depending on the number of samples to be processed.


Assuntos
Fluoresceínas/química , Corantes Fluorescentes/química , Compostos Organometálicos/química , Proteínas/química , Coloração e Rotulagem/métodos , Sequência de Aminoácidos , Animais , Arsenicais/química , Sítios de Ligação , Células Cultivadas , Transferência Ressonante de Energia de Fluorescência , Humanos , Ligação Proteica , Proteínas/análise
7.
Methods Enzymol ; 438: 259-76, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18413254

RESUMO

Ras proteins are small GTPases that play key roles in the regulation of several cellular processes such as growth, differentiation, and transformation. Although Ras signaling was thought to occur uniformly on the inner leaflet of the plasma membrane, a growing body of evidence indicates that Ras activation happens dynamically within defined plasma membrane microdomains and at other specific intracellular compartments, thus ensuring the generation of distinct signal outputs. Yet the mechanisms that control the spatiotemporal segregation of Ras proteins remain poorly characterized. We have recently shown that the differential modification of Ras proteins by ubiquitination is a crucial factor that controls Ras intracellular trafficking and signaling potential. To better understand the process of Ras ubiquitination, it is important to establish assays that not only provide information about the nature of the ubiquitin modification involved, but also enable the monitoring of the dynamics of this process. In this chapter, we will describe biochemical and biophysical methodologies, namely immunoprecipitation, nickel-chelate affinity chromatography, and bioluminescence resonance energy transfer (BRET), for monitoring the ubiquitination of Ras proteins. Although the description focuses on Ras, the assays described can in principle be applied to the study of a range of proteins of interest that may be subject to ubiquitination, and the use of the different methods in parallel should provide new insights into the nature and dynamics of protein ubiquitination.


Assuntos
Ubiquitina/metabolismo , Proteínas ras/metabolismo , Células Cultivadas , Cromatografia de Afinidade , Fluorometria/métodos , Proteínas Luminescentes/fisiologia , Ubiquitinação/fisiologia
8.
EMBO Rep ; 6(4): 334-40, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15776020

RESUMO

Recruitment of beta-arrestin (beta-arr) to agonist-stimulated G-protein-coupled receptors (GPCRs) has a crucial role in controlling signalling efficacy and selectivity. When translocated to the receptor, beta-arr is believed to undergo important conformational rearrangement necessary for its downstream actions. To probe these changes in living cells, we constructed an intramolecular bioluminescence resonance energy transfer (BRET)-based biosensor, in which beta-arr is sandwiched between the Renilla luciferase (Luc) and the yellow fluorescent protein (YFP). We show that the intramolecular BRET between Luc and YFP was significantly increased following GPCR activation, suggesting a conformational rearrangement bringing the amino terminus and carboxyl terminus of beta-arr in closer proximity. Kinetic analysis showed that this conformational change follows the initial beta-arr/receptor engagement. In addition to providing new insights into the agonist-induced conformational rearrangements of beta-arr in living cells, the double-brilliance beta-arr offers a universal biosensor for GPCR activation, allowing the study of native receptors in large-scale screening analysis.


Assuntos
Arrestinas/química , Técnicas Biossensoriais/métodos , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Arrestinas/metabolismo , Proteínas de Bactérias/metabolismo , Linhagem Celular , Vetores Genéticos/genética , Humanos , Luciferases de Renilla/metabolismo , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Conformação Proteica , beta-Arrestinas
9.
EMBO J ; 23(20): 3950-61, 2004 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-15385966

RESUMO

The roles of betaarrestins in regulating G protein coupling and receptor endocytosis following agonist stimulation of G protein-coupled receptors are well characterised. However, their ability to act on their own as direct modulators or activators of signalling remains poorly characterised. Here, betaarrestin2 intrinsic signalling properties were assessed by forcing the recruitment of this accessory protein to vasopressin V1a or V2 receptors independently of agonist-promoted activation of the receptors. Such induction of a stable interaction with betaarrestin2 initiated receptor endocytosis leading to intracellular accumulation of the betaarrestin/receptor complexes. Interestingly, betaarrestin2 association to a single receptor protomer was sufficient to elicit receptor dimer internalisation. In addition to recapitulating betaarrestin2 classical actions on receptor trafficking, the receptor activity-independent recruitment of betaarrestin2 activated the extracellular signal-regulated kinases. In the latter case, recruitment to the receptor itself was not required since kinase activation could be mediated by betaarrestin2 translocation to the plasma membrane in the absence of any interacting receptor. These data demonstrate that betaarrestin2 can act as a 'bonafide' signalling molecule even in the absence of activated receptor.


Assuntos
Arrestinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Linhagem Celular , Membrana Celular/metabolismo , Endocitose , Ativação Enzimática , Ensaio de Imunoadsorção Enzimática , Técnica Direta de Fluorescência para Anticorpo , Humanos , Cinética , Fusão de Membrana , Microscopia de Fluorescência , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Modelos Biológicos , Fosforilação , Ligação Proteica , Receptores de Vasopressinas/metabolismo , Sirolimo/análogos & derivados , Sirolimo/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo
10.
J Biol Chem ; 279(49): 50904-14, 2004 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-15452133

RESUMO

In this study, we investigated the mechanism by which a peptide mimicking the third cytoplasmic loop of the vasopressin V2 receptor inhibits signaling. This loop was synthesized as a cyclic peptide (i3 cyc) that adopted defined secondary structure in solution. We found that i3 cyc inhibited the adenylyl cyclase activity induced by vasopressin or a nonhydrolyzable analog of GTP, guanosine 5'-O-(3-thio)triphosphate. This peptide also affected the specific binding of [3H]AVP by converting vasopressin binding sites from a high to a low affinity state without any effect on the global maximal binding capacity. The inhibitory actions of i3 cyc could also be observed in the presence of maximally uncoupling concentration of guanosine 5'-O-(3-thio)triphosphate, indicating a direct effect on the receptor itself and not exclusively on the interaction between the Gs protein and the V2 receptor (V2-R). Bioluminescence resonance energy-transfer experiments confirmed this assumption, because i3 cyc induced a significant inhibition of the bioluminescence resonance energy-transfer signal between the Renilla reniformis luciferase and the enhanced yellow fluorescent protein fused V2-R. This suggests that the proper arrangement of the dimer could be an important prerequisite for triggering Gs protein activation. In addition to its effect on the receptor itself, the peptide exerted some of its actions at the G protein level, because it could also inhibit guanosine 5'-O-(3-thio)triphosphate-stimulated AC activity. Taken together, the data demonstrate that a peptide mimicking V2-R third intracellular loop affects both the dimeric structural organization of the receptor and has direct inhibitory action on Gs.


Assuntos
Peptídeos/química , Receptores de Vasopressinas/química , Adenilil Ciclases/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Fenômenos Bioquímicos , Bioquímica , Encéfalo/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Dicroísmo Circular , Dimerização , Relação Dose-Resposta a Droga , Transferência de Energia , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Guanosina Trifosfato/química , Humanos , Rim/metabolismo , Cinética , Luciferases/metabolismo , Proteínas Luminescentes/química , Modelos Biológicos , Dados de Sequência Molecular , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Ratos , Renilla , Transdução de Sinais , Espectrometria de Fluorescência
11.
Proc Natl Acad Sci U S A ; 101(6): 1548-53, 2004 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-14757828

RESUMO

V1a vasopressin receptor (V1aR) and V2 vasopressin receptor (V2R) present distinct mechanisms of agonist-promoted trafficking. Although both receptors are endocytosed by way of beta-arrestin-dependent processes, beta-arrestin dissociates rapidly from V1aR, allowing its rapid recycling to the plasma membrane while beta-arrestin remains associated with V2R in the endosomes, leading to their intracellular accumulation. Here, we demonstrate that, when coexpressed, the two receptors can be endocytosed as stable heterodimers. On activation with a nonselective agonist, both receptors cotrafficked with beta-arrestin in endosomes where the stable interaction inhibited the recycling of V1aR to the plasma membrane, thus conferring a V2R-like endocytotic/recycling pattern to the V1aR/V2R heterodimer. Coexpression of the constitutively internalized R137HV2R mutant with V1aR was sufficient to promote cointernalization of V1aR in beta-arrestin-positive vesicles even in the absence of agonist stimulation. This finding indicates that internalization of the heterodimer does not require activation of each of the protomers. Consistent with this notion, a V1aR-selective agonist led to the coendocytosis of V2R. In that case, however, the V1aR/V2R heterodimer was not stably associated with beta-arrestin, and both receptors were recycled back to the cell surface, indicating that the complex followed the V1aR endocytotic/recycling path. Taken together, these results suggest that heterodimerization regulates the endocytotic processing of G protein-coupled receptors and that the identity of the activated protomer within the heterodimer determines the fate of the internalized receptors.


Assuntos
Arrestinas/metabolismo , Receptores de Vasopressinas/metabolismo , Linhagem Celular , Dimerização , Endocitose , Humanos , Microscopia de Fluorescência , Transporte Proteico , beta-Arrestinas
12.
EMBO Rep ; 5(1): 30-4, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14710183

RESUMO

The classical idea that G-protein-coupled receptors (GPCRs) function as monomeric entities has been unsettled by the emerging concept of GPCR dimerization. Recent findings have indicated not only that many GPCRs exist as homodimers and heterodimers, but also that their oligomeric assembly could have important functional roles. Several studies have shown that dimerization occurs early after biosynthesis, suggesting that it has a primary role in receptor maturation. G-protein coupling, downstream signalling and regulatory processes such as internalization have also been shown to be influenced by the dimeric nature of the receptors. In addition to raising fundamental questions about GPCR function, the concept of dimerization could be important in the development and screening of drugs that act through this receptor class. In particular, the changes in ligand-binding and signalling properties that accompany heterodimerization could give rise to an unexpected pharmacological diversity that would need to be considered.


Assuntos
Receptores Acoplados a Proteínas G/química , Dimerização , Modelos Moleculares , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
13.
Mol Endocrinol ; 17(4): 677-91, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12554793

RESUMO

G protein-coupled receptor (GPCR) oligomerization is a growing concept that has emerged from several studies suggesting that GPCRs can form both homo- and heterodimers. Using both coimmunoprecipitation and bioluminescence resonance energy transfer (BRET) approaches, we established that the vasopressin V1a, V2, and the oxytocin receptors exist as homo- and hetero-dimers in transfected human embryonic kidney 293T cells. Each receptor protomer had a similar propensity to form homo- and heterodimers, indicating that their relative expression levels may determine the homo-/heterodimer ratio. The finding that immature forms of the receptor can be immunoprecipitated as homo- and heterodimers and the detection by BRET of such oligomer in endoplasmic reticulum-enriched fractions suggest that the oligomerization processes take place early during biosynthesis. Treatment with agonists or antagonists did not modify the BRET among any of the vasopressin and oxytocin receptor pairs studied, indicating that the dimerization state of the receptors is not regulated by ligand binding once they have reached the cell surface. Taken together, these results strongly support the notion that GPCR dimerization is a constitutive process.


Assuntos
Receptores de Ocitocina/biossíntese , Receptores de Vasopressinas/biossíntese , Antagonistas dos Receptores de Hormônios Antidiuréticos , Biofísica/métodos , Células Cultivadas , Dimerização , Humanos , Rim/citologia , Rim/efeitos dos fármacos , Rim/embriologia , Ligantes , Medições Luminescentes , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Morfolinas/farmacologia , Testes de Precipitina , Receptores de Ocitocina/genética , Receptores de Ocitocina/metabolismo , Receptores de Vasopressinas/agonistas , Receptores de Vasopressinas/genética , Receptores de Vasopressinas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Compostos de Espiro/farmacologia , Frações Subcelulares
14.
J Med Chem ; 45(12): 2579-88, 2002 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-12036367

RESUMO

The fluoresceinyl (Flu) group has been linked by an amide bond to the side chain amino group at position 8 of (a) two oxytocin (OT) antagonists, to give d(CH(2))(5)[Tyr(Me)(2),Thr(4),Orn(8)(5/6C-Flu),Tyr-NH(2)(9)]VT (Orn(8)(5/6C-Flu)OTA) (1) and desGly-NH(2),d(CH(2))(5)[D- Tyr(2),Thr(4),Orn(8)(5/6C-Flu)]VT (2), and (b) eight Lys(8) and Orn(8) analogues of potent OT agonists, to give d[Lys(8)(5/6C-Flu)]VT (3), d[Thr(4),Lys(8)(5/6C-Flu)]VT (4), [HO(1)][Lys(8)(5/6C-Flu)]VT (5), [HO(1)][Thr(4),Lys(8)(5/6C-Flu)]VT (6), d[Orn(8)(5/6C-Flu)]VT (7), d[Thr(4),Orn(8)(5/6C-Flu)]VT (8), [HO(1)][Orn(8)(5/6C-Flu)]VT (9), and [HO(1)][Thr(4),Orn(8)(5/6C-Flu)]VT (10). The tetramethylrhodamyl (Rhm) group was attached to the precursor peptide of 9 to give [HO(1)][Orn(8)(5/6C-Rhm)]VT (11). All 11 fluorescent peptides were evaluated in human OT and vasopressin V(1a) (vasoconstrictor), V(1b) (pituitary), and V(2) (antidiuretic) receptor binding and functional assays. With K(d) = 6.24, 217, >10000, and >10000 nM for the OT, V(1a), V(1b), and V(2) receptors, peptide 1 is a potent and selective fluorescent OT antagonist and may be useful for specifically labeling OT receptors while peptide 2 exhibits low affinities for all the receptors. The fluorescent peptides 3-10 are all very potent agonists for the human OT receptor. They exhibit the following K(d) values (nM) for the human OT, V(1a), V(1b), and V(2) receptors, respectively: (3) 0.29, 57, 124, >10000; (4) 1.8, 25.5, 150, >10000; (5) 0.34, 13.7, 66, nd (not determined); (6) 0.32, 17.3, 53, >10000; (7) 0.25, 107, 393, >10000; (8) 0.40, 30, 282, >10000; (9) 0.18, 12.2, 126, nd; (10) 0.17, 11.8, 87, >1000; (11) 0.092, 7.36, nd, nd. Peptide 7 exhibits both a high affinity and a high selectivity for human OT receptors. Peptides 7 and 11 were utilized to study the internalization of the OT receptor-ligand complex. Preliminary studies indicate that this process is similar to that observed for the vasopressin V(1a) receptor and differs from that observed for vasopressin V(2) receptors. Some or all of the fluorescent OT antagonists and agonists reported here are very promising new fluorescent ligands for labeling cells which express the human OT receptor and are also useful tools to follow endocytosis of the receptor-ligand complex.


Assuntos
Corantes Fluorescentes/síntese química , Oligopeptídeos/síntese química , Receptores de Ocitocina/efeitos dos fármacos , Receptores de Vasopressinas/efeitos dos fármacos , Animais , Antagonistas dos Receptores de Hormônios Antidiuréticos , Ligação Competitiva , Células CHO , Cricetinae , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Humanos , Fosfatos de Inositol/biossíntese , Ligantes , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Ensaio Radioligante , Receptores de Ocitocina/agonistas , Receptores de Ocitocina/antagonistas & inibidores , Receptores de Vasopressinas/agonistas , Espectrometria de Massas por Ionização por Electrospray , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...